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Résumé : Pour modéliser des systèmes mécaniques nous partirons de l’introduction naturelle du concept  de métrique d’espace pour calculer les géodésiques d’une surface (le chemin le plus court entre deux points) dans l’espace ; nous montrerons l’intérêt de l’utilisation de ce concept, et du calcul tensoriel associé, d’une part pour présenter simplement des résultats classiques et d’autre part pour étudier et interpréter des phénomènes dissipatifs.

De fait c’est l’étude de tels systèmes qui nous a poussé à utiliser ce concept ; on donnera une traduction en terme de facteur conforme de lagrangien. L’idée essentielle à retenir par derrière est le fait qu’un système dissipatif peut être considéré comme fermé (non dissipatif) via un facteur conforme dans une interprétation lagrangienne ou via l’adjonction d’une dimension supplémentaire dans une interprétation métrique.

Concrètement, tout se passe comme si le temps, dans le repère d’un système dissipatif, ne s’écoule pas de la même manière que dans le repère de l’observateur.
Keywords : métrique, Lagrangien, systèmes dissipatifs, géodésiques.
1. Introduction
Il s’agit de présenter le plus simplement possible des outils équivalents pour résoudre des problèmes de mécanique. Suivants les problèmes, l’un ou l’autre des outils est plus commode, pratique, signifiant. Ce sont des outils de géométrie et de géométrie différentielle.

Un certain nombre de résultats ne seront pas rappelés, dans la mesure où ils sont classiques, dans le sens où on peut les trouver dans de nombreux ouvrages. Notre but est plus d’ouvrir certaines portes ou perspectives qui s’avèrent fructueuses dans un certain nombre d’exemples (Al Majid 2002, Al Majid et Dufour 2003, Allezy 2006).

Cependant une difficulté se présente celle de notation de concepts qui sont très différentes parfois entre mécaniciens et mathématiciens.  Le but essentiel sera d’éclairer le concept de mouvement, soit du point de vue de la compréhension des équations d’un mouvement, soit du point de vue du mouvement lui-même. Pour cela, nous partirons d’exemples simples (fermés) de mécanique, dont on connaît bien le lagrangien, puis ouverts (il y a dissipation d’énergie) et nous présenterons deux manières très différentes et mathématiquement équivalentes pour tenir compte de cette dissipation d’énergie. L’exemple emblématique sera celui le plus simple de l’oscillateur. Nous développerons la méthode dite du lagrangien conforme et celle de la métrique. L’idée physique est la suivante  : Lorsqu’il n’y a pas de dissipation d’énergie (système fermé) le lagrangien est une constante du mouvement, ce qui n’est plus lors de frottements, source extérieure d’énergie variable, etc.  ; le système est ouvert. Construire un nouveau lagrangien à partir du lagrangien associé au système fermé pour le rendre invariant dans une situation de dissipation d’énergie, revient à "fermer" ce système ouvert. C’est le sens du facteur conforme, ou de l’ajout d’une dimension supplémentaire (définie en fonction d’un paramètre pertinent) et d’une métrique associée qui donnera lieu, via le tenseur de courbure associé, à une équation de conservation. Ces méthodes peuvent paraître, a priori, abstraites voir rebutantes, mais nous espérons que leur mise en oeuvre à travers des situations classiques montrera, au delà de leur pertinence, l’aspect "naturel" de ces méthodes. Les deux approches différentes s’éclairent l’une l’autre, et permettrons à terme de mieux saisir la physique sous jacente. Autrement dit, il n’est pas encore question de tout bien comprendre ce qui se passe en cas de dissipation d’énergie, mais de proposer d’une part des outils et d’autre part des voies qui pourraient s’avérer pertinentes.

Ce travail est issu de la rencontre de mécaniciens travaillant sur des systèmes dissipatifs à l’INSA de Lyon, et de physiciens et mathématiciens ayant une pratique du calcul tensoriel et des métriques.
2. Chemin le plus court sur une surface

Beaucoup de domaines de la physiques et de la mécanique sont confrontés au problème de connaître puis calculer des trajectoires qui minimisent des contraintes ; il est question souvent de trajectoire la plus courte, de géodésique.

2.1  Sur le théorème d’Euler

Examinons le cas le plus simple, bien qu’abstrait. Soit l’espace de fonctions continues, différentiables par morceaux définies sur un intervalle I=[t1, t2] et à valeurs réelles. Nous noterons E=C1,0(I,R). Pour f ( C1,0(I,R), nous noterons 
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 sa dérivée qui existe presque partout. Lorsque cela sera nécessaire nous supposerons les fonctions deux fois dérivables. 
Soit maintenant une fonction (un lagrangien par exemple) 
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 définie sur 
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 et à valeurs dans R. Sur le sous espace des fonctions de 
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 qui vérifient 
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, considérons l’application
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et cherchons les fonctions 
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 qui soient un minimum relatif pour 
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; si un tel minimum existe nous le nommerons chemin le plus court sous la contrainte 
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La réponse est donnée par le théorème d’Euler-Lagrange  :  si 
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 est un minimum local alors 
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Réciproquement si 
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 vérifie l’équation d’Euler-Lagrange alors on a un extremum.
2.2  Sur une surface dans R3
Soit R3 muni d’une base orthonormée 
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, s’écrit  
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. Une surface dans R3 est définie par une équation de la forme 
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. Par exemple l’hyperboloïde à une nappe est définie par 
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, la sphère par 
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 et le cylindre, d’axe 
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 et de rayon 
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, par 
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. Etant donné que l’on peut paramétrer (au moins localement) une surface par deux variables 
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, une surface peut être définie par un ensemble de trois équations de ces deux variables : 
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. Par exemple pour la sphère on peut prendre les variables angulaires usuelles 
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 et pour l’hyperboloïde un angle sphérique et un angle hyperbolique.
 Problème : Soit deux points A et B d’une surface de R3, comment trouver le chemin 
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 le plus court, tracé sur cette surface, joignant des points A et B donnés? 
Nous avons trois méthodes à notre disposition ; la première purement géométrique (et souvent heuristique), la méthode Lagrangienne et enfin la méthode métrique.
La méthode géométrique est intuitive, utilisant la visualisation de la figure et les symétries de cette surface. Si pour la sphère le chemin le plus court est toujours porté par un arc de grand cercle, i.e. par l’intersection de la sphère avec le plan passant par A, B et le centre de la sphère (si les points A et B ne sont pas antipodaux), qu’en est-il pour un cylindre, un hyperboloïde?  On peut penser que l’on obtient ces chemins via l’intersection du cylindre, de l’hyperboloïde avec un plan, mais quel plan? Et pour une surface quelconque ?
La méthode Lagrangienne  : Soit 
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, une courbe, tracée sur la surface et joignant les points A et B.

L’élément de longueur usuel 
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 de la courbe s’écrit 
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 étant sur la surface, on a la contrainte                                                      
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Pour 
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, la longueur 
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 du chemin définie par 
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 entre les points A et B est : 
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Or la contrainte relie les 
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, pour (k = 1, 2, 3) par :            
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et donc  
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où 
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On est ramené à un problème similaire au précédent de minimisation de 
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 qui s’obtient au moyen des équations d’Euler-Lagrange qui pour i =1, 2 s’écrivent :                     
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Application  : pour la sphère, le cylindre et l’hyperboloïde, 
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avec 
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 pour la sphère, 
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 pour l’hyperboloïde. Pour le cylindre vertical de rayon R, on a : 
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Les équations d’Euler-Lagrange nécessitent des calculs précautionneux (mais très rapides si on le fait avec un logiciel de calcul formel), et l’on vérifie facilement que par exemple 
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 fournit une solution pour chacun des trois exemples ce qui signifie que pour la  sphère tout arc de grand cercle est géodésique (en utilisant les symétries de la sphère). Pour le cylindre ou l’hyperboloïde cela signifie que toute intersection avec un plan vertical passant par l’origine est géodésique. Mais trouver toutes les géodésiques de l’hyperboloïde est beaucoup plus compliqué. Mais ici une remarque s’impose  : si l’on prend l’élément de distance invariant par les rotations hyperboliques dans les plan 
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 est la distance pseudo-euclidienne définie par 
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, et L a la même expression que ci-dessus avec 
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. Les équations d’Euler-Lagrange correspondantes sont plus simples et il est alors facile de montrer que les géodésiques sont intersections de certains plans et de la surface, comme pour la sphère et le cylindre.
La méthode métrique : considérons maintenant notre surface définie par 
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 comme paramétrée (localement) par un ensemble de trois équations de deux variables u et v  :    
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Dans l’exemple de la sphère on peut prendre : 
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. L’élément de longueur euclidien 
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 sur cette surface va pouvoir s’exprimer avec les éléments 
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Dans l’exemple du cylindre on peut prendre : 
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. On prendra le même élément de longueur.
Dans l’exemple de l’hyperboloïde on peut prendre  : 
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L’élément de longueur pseudo-euclidien 
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 sur cette surface va pouvoir s’exprimer avec les éléments 
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 :
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Ainsi, en regroupant les termes (aussi bien dans les trois exemples que pour une surface quelconque) et en nommant 
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 les coefficients on a  : 
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Le dernier membre de droite utilise ce que l’on appelle les conventions d’Einstein ; plus précisément, 
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 et l’on somme sur les indices inférieurs qui apparaissent également en indices supérieurs.
Nous obtenons ainsi ce que l’on appelle une métrique, notée g, sur la surface paramétrée, ici la métrique induite sur cette surface par la métrique euclidienne sur R3 pour la sphère et le cylindre et par la métrique pseudo-euclidienne pour l’hyperboloïde. Il nous reste plus qu’à utiliser le calcul tensoriel usuel pour obtenir les équations des géodésiques sur cette surface.
On commence par calculer ce que les mathématiciens appelle la connexion 
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 associée à cette métrique (les symboles de Christoffel) :                                          
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où les 
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 sont les éléments de la matrice inverse de la matrice 
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, et ou la sommation se fait sur les indices répétés.
Soit maintenant une courbe 
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 tracée sur cette surface paramétrée, on a 
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 pour i = 1, 2, 3 (et où les fonctions  
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)

,

i

fuv

 paramètrent la surface). Alors pour que cette courbe soit sur une géodésique il faut qu’elle vérifie les équations des géodésiques : 
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Mais la métrique elle-même donne une intégrale première de ces équations : 
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que l’on nomme le Lagrangien de la métrique. Ce Lagrangien exprime une constante du mouvement sur une géodésique. Et les équations d’Euler-Lagrange associées à L sont les équations des géodésiques. Ainsi une formulation métrique nous donne un Lagrangien. Nous avons donc à notre disposition deux formulations équivalentes pour trouver les géodésiques, et ces formulations s’éclairent l’une l’autre.
Application à la sphère, au cylindre et à l’hyperboloïde. Nous donnons ici la métrique, l’intégrale première et les équations des géodésiques.
Pour la sphère : la matrice de la métrique est 
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 et la métrique s’écrit
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Donc la constante du mouvement est       
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et les équations des géodésiques sont  :         
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Pour le cylindre : la métrique s’écrit               
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la constante du mouvement est                                   
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et les équations des géodésiques sont  :                            
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Pour l’hyperboloïde : la métrique s’écrit                   
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 la constante du mouvement est                     
[image: image90.wmf](

)

22222

ch

LRuRuv

=-

&&


(24)

et les équations des géodésiques sont  :              
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2.3  Dans un espace de dimension n
Les résultats sont qualitativement les mêmes, nous allons les préciser pour fixer des notations.
Soit donc une "surface généralisée" S (une sous-variété) de dimension m dans Rn de base 
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[image: image94.wmf]dnm

=-

 équations 
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 ; mathématiquement, on dit que l’on a une carte de cette variété S. Considérons S munie de la métrique induite par une métrique (euclidienne, pseudo-euclidienne ou plus générale) choisie a priori sur Rn. Cette métrique définit un élément de longueur 
[image: image100.wmf]ds

 sur cette surface ; et dans le paramétrage par 
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 on a, pour la métrique euclidienne sur Rn : 
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Pour une métrique pseudo-euclidienne 
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Notons 
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 le coefficient de 
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 alors le carré de l’élément de longueur s’écrit : 
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avec les conventions d’Einstein. Nous appellerons 
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 la matrice de la métrique dans les coordonnées
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où les 
[image: image111.wmf]kn

g

 sont les éléments de la matrice inverse de la matrice 
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, la sommation se faisant suivant la convention usuelle sur les indices répétés.

Soit maintenant 
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, une courbe, tracée sur la surface paramétrée au moyen des n fonctions 
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 des m variables 
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. Alors pour que cette courbe soit sur une géodésique il faut qu’elle vérifie les équations des géodésiques :            
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Et la métrique elle-même donne une intégrale première de ces équations, un Lagrangien : 
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dont les équations d’Euler-Lagrange                
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nous donnent des trajectoires qui sont les géodésiques de la métrique g.

Il est important de signaler des objets géométriques qui sont des invariants associés à la métrique et donc à la surface ce sont les tenseurs de Riemann et de Ricci et la courbure scalaire. Nous les introduirons plus loin.  Un exemple : l’espace la relativité restreinte. On prend n = m = 4, avec sur la base 
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 la métrique pseudo-euclidienne (métrique de Minkowki) définie par 
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. On paramètre cette surface (qui est l’espace tout entier) au moyen des coordonnées polaires usuelles. On a 
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On calcule les coefficients 
[image: image125.wmf]ij
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 et  la métrique     
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est associée à la matrice :
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2.4   Premières applications en mécanique
Nous allons donner deux exemples mécaniques dans l'espace-temps de Minkowski qui permettront de saisir l'intérêt du calcul métrique.

2.4.1 Système tournant
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Considérons une pièce tournant autour de l'axe 
[image: image128.wmf]4
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 à la vitesse angulaire
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. On paramètre

R4 au moyen des coordonnées cylindriques :  
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Le calcul des coefficients 
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 nous donne la métrique         
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Les éléments non nuls de la connexion sont :                       
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On en déduit alors les équations des géodésiques :
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La variable p de paramétrage des géodésiques est temporelle du fait de la première équation 
[image: image135.wmf](
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; les deux équations suivantes nous donnent les forces centrifuge et de Coriolis.

On aurait retrouvé ces résultats en prenant les équations d'Euler-Lagrange du Lagrangien
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Plaçons nous maintenant du point de vue de l'observateur lié à la pièce tournante, ce qui

revient à poser 
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. La métrique s'écrit alors :
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et on retrouve exactement les mêmes équations du mouvement. En clair, cet exemple montre que les concepts de forces centrifuge et de Coriolis sont les mêmes tant du point de vue mécanique classique (Newtonienne) que relativiste (dans un univers vide). Au vu des résultats ci-dessus, on se convaincra sans peine que l'on obtient les forces centrifuges et de Coriolis en se restreignant à l'espace R3 avec la métrique euclidienne exprimée dans les coordonnées cylindriques.

Remarque : si l'on considère maintenant un système tournant à vitesse variable 
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les résultats sont qualitativement les mêmes : la métrique (qui donne une intégrale première

du mouvement) s'écrit :                  
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et les équations des géodésiques



[image: image141.wmf](

)

(

)

(

)

(

)

(

)

22

2

2

20,

ddddd

rtrtrttrt

dtdtdtdt

dt

æöæöæöæö

-w-wq-q=

ç÷ç÷ç÷ç÷

èøèøèøèø


(43)

pour la force centrifuge et pour la force de Coriolis on a :
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2.4.2  Corps en chute libre

Considérons maintenant, toujours dans l’espace de Minkowski, le mouvement radial d’un corps en chute libre attiré par une masse m, (on notera 
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 sa "masse" relativiste qui a une dimension de longueur), que l’on prendra au centre du système de coordonnées sphériques. On supposera connue la vitesse 
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 (données initiales). On sait, d’après la mécanique newtonienne classique, que ce corps en chute libre est soumis à une accélération 
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La constante K est reliée à l’énergie du mobile (énergie cinétique - énergie potentielle) car :
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Procédons comme dans l’exemple précédent de la pièce qui tourne, il est alors immédiat de remarquer que si l’on prend les métriques obtenues par déformation de la métrique de Minkowski qui utilisent le fait que 
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 pour le mobile en chute libre, donc de la forme 
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où ( est une constante, ces métriques admettent les trajectoires du mobile comme solutions des équations des géodésiques. On a, de manière équivalente, les Lagrangiens 
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et leurs équations d’Euler-Lagrange qui rendent compte du mouvement radial. Il reste à déterminer la constante (, ce qui peut être fait en minimisant la courbure de cette surface. A chaque métrique on associe des invariants géométriques de courbure, et parmi ceux-ci la courbure scalaire notée R qui généralise la courbure de Gauss. Cette courbure mesure l’écart entre l’aire euclidienne d’une sphère et l’aire associée à la métrique de cette sphère. Le calcul de R (immédiat avec un logiciel de calcul formel) nous dit que : 
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 Ainsi la métrique "la plus simple" (car la plus plate) s’écrit 
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où 
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 est la vitesse newtonienne 
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, la constante du mouvement.
 Remarque  : cette métrique, facile à obtenir, est solution des équations d’Einstein dans le vide, fait qui est ignoré dans la littérature, et pourtant établie en 1921 par Paul Painlevé et également par A. Gullstrand. Il est trop souvent utilisé la métrique dite de Schwarzschild pour ce problème (Painlevé 1921, Mizony 2005).

Mais surtout nous l’avons obtenu uniquement à partir des principes newtoniens!  C’est le premier exemple d’équivalence entre la théorie de Newton et de celle d’Einstein.

2.5  Sur calcul tensoriel

Nous avons vu dans un premier temps qu’une surface dans R3 présentait de la courbure et que naturellement on avait un élément de longueur, le 
[image: image163.wmf]ds

 qui s’exprime, dans un paramétrage, par une métrique. Pour les mathématiciens se donner un paramétrage d’une surface c’est se donner ce qu’ils appellent une carte de la variété (surface). Puis nous avons considéré des surfaces de dimension m (paramétrées par m variables uj) dans un espace pseudo-euclidien de dimension n. Cette métrique pseudo-euclidienne induit, sur la surface paramétrée, un élément de longueur 
[image: image164.wmf]ds

 qui permet de calculer la longueur d’une trajectoire tracée sur cette surface. Le calcul tensoriel permet de mettre en oeuvre un moyen de calculer les géodésiques, les chemins les plus courts entre deux points d’une surface. Les mécaniciens savent, depuis Euler et Lagrange, calculer les géodésiques à partir d’un Lagrangien. C’est une méthode analytique qui a largement fait ses preuves ; mais la difficulté réside souvent dans la recherche d’un "bon" Lagrangien pour traduire un problème mécanique, l’idée reposant sur le fait que ce Lagrangien doit exprimer une "bonne" conservation de l’énergie. Quand se manifeste des phénomènes de dissipation d’énergie, la difficulté redouble. Un mouvement mécanique pouvant être décrit par une trajectoire sur une surface, aussi bien au sens restreint du terme (une surface dans R3), que dans un sens plus général (associé aux degrés de liberté) traduit par une surface de dimension m, nous pouvons utiliser alors l’outil géométrique des métriques et du calcul tensoriel pour soutenir notre intuition et "trouver un bon Lagrangien". Les premiers exemples donnés ci-dessus en sont, nous l’espérons, une bonne illustration. Une métrique sur une surface de dimension m doit être vue comme une déformation d’une distance dans Rn, déformation provenant de la forme de cette surface ; cette déformation se traduit donc par des "courbures" dans toutes les directions. La géométrie étudie donc des objets abstraits pour nommer ces "courbures" et en donner des propriétés.

Le résultat principal de cette théorie mathématique associée à une surface munie d’une métrique est l’existence d’invariants géométriques, appelés courbures, le premier d’entre eux étant le tenseur de Riemann, noté traditionnellement 
[image: image165.wmf]l

ijk

R

. Deux autres invariants obtenus par "moyennisation" de ce tenseur de Riemann est le tenseur de Ricci, noté Rij, et la courbure scalaire, notée R. L’idée intuitive repose sur le fait que plus ces courbures s’annulent, plus la surface est plate. Par exemple si le tenseur de Riemann est identiquement nul on dit que cette surface est plate (c’est le cas de l’espace de Minkowski). Dans l’exemple du corps en chute libre, nous avons utilisé la nullité de la courbure scalaire pour déterminer un paramètre inconnu ; et dans cet exemple, le tenseur de Ricci est également identiquement nul. Il y a aussi par derrière le principe de simplicité, cher à Einstein : plus les courbures s’annulent, plus les calculs sont aisés et l’interprétation des résultats facilitée.

Evidemment il nous faut rappeler qu’à toute métrique est associé un Lagrangien dont les équations d’Euler-Lagrange nous donnent les mêmes trajectoires que les équations des géodésiques associées à la métrique, et réciproquement. Mais suivant les problèmes les calculs sont plus faciles (plutôt moins difficiles) dans un des deux cadres. En fait on a à notre disposition deux approches théoriquement équivalentes qui s’éclairent mutuellement : l’une basée sur la "conservation de l’énergie", l’autre sur la "simplicité des courbures géométriques". A nous de jouer sur ces deux tableaux pour mieux saisir des problèmes de mécanique.

De nombreux ouvrages présentent des propriétés (et démonstrations) de ces courbures (Fock 1964, Einstein 1971, Weinberg 1972, Chilov 1975, Doubrovine et autres 1982, Mizony 2003) ; il n’est pas question ici de les présenter. On signalera cependant l’importance du tenseur de Riemann. Si culturellement il permet d’entrevoir que la connaissance d’une surface est résumée dans ce tenseur, il est important pour définir le tenseur de Ricci et la courbure scalaire, puis le tenseur d’Einstein qui tisse des liens entre "courbures" et "énergies". 

3  Sur la problématique de l’oscillateur harmonique 
3.1  Présentation

Plaçons-nous dans le contexte d’un des plus simples des systèmes mécaniques : celui du système masse-ressort idéal, à petites oscillations, soumis à une force extérieure F(t). L’équation du mouvement de la masse m est traditionnellement écrite sous la forme                                       
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où K est une constante associée au ressort. Expérimentalement les mécaniciens savent qu’il existe un terme complémentaire en 
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, appelé force de "frottement" plus précisément force de dissipation, du fait qu’il est proportionnel à la vitesse, et ce parfois bien qu’il n’existe aucune source de frottement identifiée. On a donc l’équation 
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où  (, le coefficient dit de dissipation (ou de viscosité) est bien mesuré.

Il est donc présupposé un espace-temps symbolisé par le couple (x, t). Dans toute la suite, x désignera le déplacement observé par un observateur fixe du laboratoire où l’oscillateur se meut et t le temps qui s’écoule à la montre de cet observateur rivé au laboratoire.

Se donner l’équation simple du pendule (de l’oscillateur harmonique) c’est se donner un certain nombre d’objets : une masse m et donc deux écritures de l’énergie associées 
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, où h est la constante de Planck, c la vitesse de la lumière et ( la fréquence relativiste ; une rigidité K et la fréquence de résonance 
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 associée à la solution générale de l’équation homogène associée à une force extérieure F(t) agissant sur la masse m.

Cette équation différentielle est établie dans le cadre de la mécanique newtonienne et provient de l’équation d’Euler-Lagrange                                                    
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associée au Lagrangien classique                   
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où 
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 désigne l’énergie cinétique de la masse m et 
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 le potentiel attaché à la rigidité (ou force de rappel) K et à la force extérieure F.  Pour ne pas compliquer le problème nous avons supposé que la force de rappel K ne dépend ni de x ni de t, et nous le supposerons par la suite, car là ne se situe pas l’essentiel du propos (autrement dit, le fait que K soit constant ou non est annexe par rapport aux problèmes de fond posés par la modélisation de l’oscillateur harmonique). 

3.2  Facteurs conformes et corrections
3.2.1  Facteur conforme et dissipation

Problème : Quel Lagrangien faut-il prendre pour obtenir l’équation du mouvement de l’oscillateur amorti ? 

Il est bien connu qu’en multipliant le Lagrangien classique par un facteur conforme de la forme 
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alors le phénomène d’amortissement est pris en compte car une des équations d’Euler-Lagrange du mouvement est de la forme cherchée.

Remarque  : Mais des expériences plus fines, lors d’études sur l’amortissement en régime transitoire rapide, montrent qu’il faut remplacer le coefficient 
[image: image177.wmf]2
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de l’équation par une fonction du temps; le problème est donc le suivant : Soit 
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 cette équation du mouvement, comment obtenir théoriquement cette fonction ((t)? Question ouverte, mais importante, il est une expérience que l’on fait souvent, celle de constater que la plupart des pannes mécaniques interviennent pendant la mise en route ou lors de l’arrêt d’un système. Peut-on limiter les sources de ces pannes qui proviennent lors d’un changement de régime brutal. En régime normal, on sait qu’il suffit d’éviter des plages de résonances, mais le problème reste incompris en régime transitoire (démarrage, arrêt, ou ... panne secondaire qui perturbe soudainement le régime normal).

Un régime transitoire rapide, correspond à une force 
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 passe rapidement d’une valeur w1 à une valeur  w2. Ce régime transitoire peut simuler la mise en marche ou l’arrêt d’un régime dit permanent (
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) pour lequel l’équation du mouvement est valable semble-t-il.

Le recours à un facteur conforme est-t-il anecdotique ou signifie-t-il quelque chose de profond ? 

3.2.2  Facteur conforme et correction relativiste

Même si la première correction relativiste, liée à la vitesse 
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, est tout à fait négligeable dans le cas de l’oscillateur harmonique, l’étude de cette correction relativiste dans un cadre Lagrangien, va nous permettre de mettre en évidence le rôle joué par la présence d’un facteur conforme.
Cette correction relativiste s’obtient usuellement en remplaçant dans l’équation du mouvement d’une part 
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[image: image185.wmf](

)

2

1

mxc

-

&

, la masse relativiste. Ainsi on obtient comme termes  principaux de l’équation du mouvement :             
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Une autre manière d’obtenir cette première correction relativiste, est de remplacer 
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 dans le Lagrangien classique. Ces deux obtentions possèdent des inconvénients ; elles ne donnent pas les mêmes points de suspension et font apparaître des termes en 
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, avec n > 2.  Il est facile de remarquer que si l’on pose 



[image: image190.wmf](

)

(

)

2

3,

22

11

22

tx

mc

r

LemxKxFtx

-F

æö

æö

=--

ç÷

ç÷

èø

èø

&


(56)

on a :      
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Nous obtenons ainsi une formulation simple de la correction relativiste dans les coordonnées (t, x) du laboratoire. 
3.2.3  Résumé sur la formulation Lagrangienne conforme

Nous venons de voir que pour obtenir le terme d’amortissement ou la correction relativiste pour l’oscillateur harmonique dans le cadre Lagrangien nous avons multiplié le Lagrangien classique par un facteur (dit conforme).

Dans un cadre plus général, écrivons la formulation Lagrangienne du problème, en partant du Lagrangien classique associé à un champ 
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Introduisons un facteur conforme en prenant :                      
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dont l’équation du mouvement s’écrit alors 
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Pour 
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 cette formule redonne aussi bien la correction relativiste (avec 
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) ; de plus ces deux corrections sont indépendantes. Dans ce cadre Lagrangien, comment trouver ce facteur conforme H(t, x), pour un régime transitoire rapide par exemple ? 

Il manque des équations. Mais revenons sur le rapport entre les équations du mouvement associées aux Lagrangiens classique et conforme. 
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Ainsi l’équation du mouvement associé au Lagrangien conforme s’obtient par la modification de l’équation du mouvement associé au Lagrangien classique d’une part par la correction dissipative (le deuxième terme) et d’autre part par une correction complémentaire (le troisième terme qui est négligeable pour les vitesses non relativistes). 

3.3  Formulations métriques

Sachant qu’une formulation lagrangienne est équivalente à une formulation métrique, il existe cependant plusieurs moyens de l’exprimer  : la première est de l’écrire à l’aide d’une métrique 2x2 sur l’espace-temps des (t, x) (une dimension d’espace) et d’essayer de considérer ce qu’amène ce point de vue géométrique ; la deuxième est d’utiliser une métrique 3x3 sur un espace des (t, x, (), où la troisième variable ( est choisie en fonction de sa pertinence (mécanique) et en utilisant le fait (mathématique) que toute surface non plate peut être plongée dans un espace plat ayant des dimensions supplémentaires.

3.3.1  Avec une métrique 2x2

Soit donc les variables (t, x) paramétrant l’espace-temps de l’observateur qui regarde les oscillations du système. Pour cet observateur la métrique est la métrique canonique de Lorentz. Soit g la métrique associée à la masse qui oscille. Prenons son écriture dans la carte associée à l’observateur ; sa matrice est de la forme générale 
[image: image200.wmf](

)

(

)

(

)

(

)

,,

,,

txftx

ftxhtx

t

æö

ç÷

-

èø

.

Mais pour obtenir des équations “simples”, il est pratique de la prendre sous la forme
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Or une intégrale première des équations des géodésiques est donnée par le Lagrangien associé à la métrique : 
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dont l’équation du mouvement, dans le temps t du laboratoire, s’écrit via l’équation d’Euler-Lagrange, 
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où 
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 etc. Par identification avec l’expression conforme associée au potentiel  ( , on obtient  : 
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où k(x) est une fonction quelconque. Nous avons donc de nombreuses formulations métriques 2x2 équivalentes à la formulation Lagrangienne conforme. Evidemment les "plus simples" sont données par k(x) = 0 et, si l’on ne veut pas de termes en 
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 =0, comme par exemple pour obtenir l’équation du mouvement de l’oscillateur amorti.

Mais dans cette formulation métrique l’on peut faire appel aux courbures (en calculant la courbure scalaire par exemple), et choisir les solutions dont les courbures seront les plus simples, voire nulles. En effet, pour les métriques 2x2, si la courbure scalaire est nulle, toutes le sont.
Pour l’oscillateur amorti, sans force extérieure (F = 0), pour k(x) = 0 et 
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 près) de la courbure scalaire (géométrique) implique que le facteur conforme soit de la forme  EQ e\s\up5(a t+b). Ce résultat, de type géométrique, confirme le bien-fondé du choix du facteur conforme ( EQ e\s\up5(a t)) pour traduire la dissipation d’énergie. Examinons maintenant le cas de l’oscillateur forcé. 

Pour 
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, la courbure scalaire s’écrit  : 
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et se réduit à                              
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pour F = 0, c’est à dire est nulle à 
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On a les mêmes résultats pour un potentiel quelconque ( et en particulier pour A(t)=( t la courbure scalaire vaut  : 
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Ainsi, les courbures associées à l’interprétation métrique d’un Lagrangien nous fournissent des équations supplémentaires. 

Passons maintenant à une deuxième interprétation métrique 2x2, cette fois ci dans le temps propre de la pièce mobile (et non plus dans le temps propre de l’observateur fixe du laboratoire). Pour cela, reprenons l’idée développée auparavant, dans les exemples de la pièce tournante et du corps en chute libre, pour l’oscillateur libre mais dissipatif d’équation du mouvement 
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  provenant du Lagrangien conforme
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. Les solutions des équations du mouvement sont de la forme :              
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où A et b sont des constantes définies par les conditions initiales. Notons v(t) la vitesse, 
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et donc à cette vitesse est associée la forme de métrique    
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 dans le temps propre t de la pièce mobile. Les équations des géodésiques se réduisent 
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 ce qui n’a rien de surprenant.

Il nous reste à calculer les différentes courbures ..., elles sont toutes nulles. Evidemment c’est une situation d’école car cette métrique est établie à partir de la connaissance de la vitesse, c’est-à-dire du mouvement cherché d’une pièce mobile. Cependant cet exemple montre que ces courbures métriques que l’on peut associer, d’une manière ou d’une autre, à un système ont un sens mécanique. Cet exemple montre que tout se passe comme si le temps propre de la pièce mobile t est différent du temps du laboratoire (obtenu en faisant 
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 dans la métrique).

En résumé, nous avons exploré deux pistes d’interprétation géométrique d’un lagrangien, chacune des pistes fournissant des éclairages, en fait des équations supplémentaires liées aux courbures. La première piste étant de souligner l’importance d’un facteur conforme qui traduit la "dissipation d’énergie", la deuxième montrant que cette "dissipation d’énergie" peut être vue comme un écoulement non linéaire du temps, i.e. le temps propre d’une pièce mobile est différent du temps propre de l’observateur fixe. 

3.3.1  Avec une métrique 3x3

Mais la géométrie nous apprend que toute surface avec courbure(s) peut être plongée dans un espace de dimension plus grande, mais sans courbure ; c’est cette voie que nous voudrions présenter, d’autant plus qu’elle s’avère efficace. Il faut introduire, pour cela une (des variables) supplémentaire(s).
Reprenons cet exemple de l’oscillateur forcé qui symbolise la mise en route d’un système (avant un régime permanent) ou l’arrêt de ce système (après ce même régime permanent). Comment prendre en compte ce qui se passe ? Si ce régime transitoire est représentée par une force 
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 par exemple, une évidence : la variable supplémentaire à introduire pour plonger l’espace des (t, x) dans un espace plus grand aura un lien avec cette fonction   (.

Plutôt que de reprendre des développements théoriques sur les métriques, présentons un résultat.
3.3.2  Confrontation aux observations
Système à un degré de liberté.

Dans le système de coordonnées 
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où  U est un potentiel.
Soit un système à un degré dont les paramètres sont présentés dans le tableau 1. Le repère de travail a pour axes 
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 le déplacement, et 
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 désignent d’une part la variable supplémentaire (la pulsation () et d’autre part le temps t. Par hypothèse les raideur et masse totales rapportées à l’axe u sont respectivement k et m. La pulsation référence est alors : 
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 La force extérieure f(t) agit suivant u. L’énergie potentielle totale par unité de masse s’écrit :                                        
[image: image230.wmf]÷

ø

ö

ç

è

æ

-

=

u

f

u

k

m

U

2

2

1

1

.
(73)

Soit ( le facteur d’amortissement mesuré en régime stationnaire par la méthode de la largeur de bande. Des calculs montrent que pour obtenir une des équations des géodésiques de la forme souhaitée, il faut prendre les coefficients g ii de la matrice g sous la forme ef(q-1) avec q-1=((  et alors les équations couplées des géodésiques pour les axes 
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et 
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(75) 
qui sont soumises aux conditions aux limites
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 tn étant le temps où la pulsation correspond à la pulsation propre. La dernière condition (76) nécessite l’utilisation de méthodes d’intégration numérique type méthode de tir, méthode des différence finies, méthode des éléments finis,…

Dans l’équation (74), la constante 
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 demeure inconnue. Pour avoir une valeur approximative l’équation (74) peut s’écrire sous la forme                             
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En vertu du principe de moindre d'action le deuxième membre de l’équation (77) doit être nul. Ceci implique 
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. La première solution, en considérant l’équation (75), signifie que l’amortissement est constant, contrairement aux résultats expérimentaux. La dernière solution est ainsi retenue. La constante 
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 doit être très petite. Dans l'application suivante elle est comprise dans 
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Validation expérimentale du modèle

La Figure 1 présente le dispositif expérimental utilisé pour l'application. Il s’agit d’un système masse-ressort à 1ddl basé sur le principe d’un pendule composé plan soumis à la gravité et à un moment de rappel introduit par un ressort. La force d’excitation est fournie par un pot électrodynamique positionné en lf et mesurée par un capteur d’effort piézo-électrique. Un capteur à courant de Foucault mesure le déplacement à l’abscisse ld
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Fig. 1. Dispositif expérimental

La force extérieure a une fréquence variable qui croit de 0 à 150 Hz et est tracée sur la Figure 2.
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Fig. 2. Force d’excitation (0-150 Hz)

	ld (m)
	0.055

	lf (m)
	0.167

	lm (m)
	0.235

	m (kg)
	23.28

	k (N/m)
	528840

	(
	0.002

	Cd (N.s/m)
	14.04

	(n (Hz)
	24.00


Tableau 1. Paramètres du système

Dans le cas de modèle classique où (avec modèle classique d'amortissement
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), la Figure 3 compare les réponses calculée (Runge-Kutta 4) et expérimentale et montre un écart après le phénomène de résonance.
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Fig. 3. Réponses calculée (modèle classique) et mesurée

Dans le cas du modèle proposé décrit par les équations (74) et (75), la méthode de tir (méthode Runge-Kutta d'ordre 4, et correction par méthode de Newton–Raphson) est utilisée avec un pas de temps de 0.4ms correspondant à 1/16 de la plus grande fréquence. La réponse calculée est comparée sur les Figures 4 et 5 à la réponse expérimentale.
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	Fig. 4. Réponses calculée (modèle proposé) et mesurée
	Fig. 5. Zoom de la Figure 4


L’écart observé est faible et rend le modèle très satisfaisant. À chaque pas du temps il est facile de tracer tout l'amortissement associé, qui est comparé, sur la Figure 6, à l'amortissement classique 
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Fig. 6. Amortissement variable (modèle proposé) et constant (modèle classique
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La Figure 7 décrit l'évolution dans le temps de la variable 
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, qui est très petite à l'instant du phénomène de résonance et à l'évolution linéaire 
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 qui correspond à l'amortissement classique 
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	Fig. 7. Evolution de ( (t)
	Fig. 8. Evolution du Lagrangien  L(t)


La Figure 8 présente l’évolution de la valeur du Lagrangien au cours de temps qui est importante autour de la résonance. Compte tenu des équations couplées (74) et (75), il s’ensuit une variation d’amortissement importante autour de la résonance.

4. Conclusion : Lagrangien et, ou métrique ? 

Nous avons proposé des pistes de traductions métriques de problèmes mécaniques. Ces interprétations que nous avons essayé de présenter comme "naturelles", ont chacune leur intérêt et leurs limites, elles s’éclairent l’une l’autre, c’est non seulement une conviction mais aussi un fait. Il suffit de revoir le problème le plus simple de l’oscillateur harmonique que trop considèrent comme depuis longtemps réglé! Nous avons voulu aussi montrer que la magnifique réalisation Lagrangienne de la mécanique pouvait s’interpréter en termes géométriques (avec ses inconvénients, l’aspect abstrait, et ses avantages, des équations supplémentaires). 

Il est temps maintenant de réaliser l’apport fondamental d’Henri Poincaré, en vue de prendre du recul vis à vis de l’élaboration de la connaissance scientifique. 

Oui pour le mathématicien géomètre, une métrique "parle" ; mais quel forme de métrique parmi toutes les métriques possibles ?  Pour l’un de nous, il "voyait mieux" avec une métrique 2x2, pour l’autre avec une métrique 3x3 (pour le problème de l’oscillateur). C’est le sens du mot "commode" de H. Poincaré. Mais allons plus loin, pour le mécanicien, un Lagrangien "parle", son flair et son savoir faire expérimental est là et efficace. Alors faut-il géométriser la mécanique ou rester avec ses méthodes classiques?  Question qui n’a aucun sens, dirait H. Poincaré. En effet il n’y a pas unicité de modélisation d’un phénomène (c’est parfaitement établi du point de vue mathématique et c’est l’apport fondamental de Poincaré, et aussi de Kant). 
Alors, si l’une ou l’autre des méthodes géométriques proposées peut aider à aiguiser l’intuition du mécanicien pour affronter des problèmes délicats, notre but sera atteint. Mais "commode" est de fait le maître mot qui doit être utilisé par le chercheur dans le choix des outils mathématiques qu’il se sent à même d’utiliser dans toute leur pertinence. C’est une manière de dire que les splendides équations d’Euler-Lagrange (et plus généralement celles d’Ostrogradsky) peuvent s’interpréter en termes géométriques (avec le calcul tensoriel et les courbures). Plus profondément les deux interprétations formelles se complètent et s’éclairent l’une l’autre théoriquement, et aussi intuitivement dans l’élaboration, en équipe, de nouveaux résultats pertinents.
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