I. Intégration numérique

A. Problème de conditions initiales

Soient un intervalle 
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 fermé de R, une application f : 
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, et une application différentiable y : 
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. On considère le problème-type suivant (problème de Cauchy) : 
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(f est une fonction donnée, y une fonction inconnue à déterminer ; 
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1. Méthodes à pas séparés

a) Méthodes de type Euler

On subdivise l'intervalle d'intégration 
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 en N sous-intervalles de longueur égale 
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, délimités par les points de subdivision 
[image: image10.wmf]h

n

a

x

n

×

+

=

, 
[image: image11.wmf]1

N

;...;

1

;

0

n

-

=

.
Pour chaque abscisse 
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, on calcule une valeur approchée 
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 de la vraie valeur 
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 de la fonction y. 

· Euler

Pour cela, on considère la tangente en 
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 à la courbe intégrale passant par ce point. La valeur de 
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 est l'ordonnée du point de cette droite d'abscisse 
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· Euler amélioré 

Pour cela, on remplace dans la formule d’Euler la pente de la tangente 
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 par la valeur corrigée au milieu de l'intervalle 
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· Euler-Cauchy 

Pour cela, on remplace dans la formule d’Euler la pente de la tangente 
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 par la moyenne de cette pente avec la valeur corrigée en 
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b) Runge-Kutta
La méthode de Runge-Kutta peut être considérée comme une généralisation des méthodes de type Euler. Elle est définie par :
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Pour la méthode d’Euler, on a
[image: image29.wmf]f
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. L'objectif est d'obtenir une meilleure précision grâce au degré de liberté supplémentaire que constitue le choix de la fonction 
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Avant de rentrer dans les détails de cette méthode, il nous définir la notion d’ordre. Ainsi, dans le cas présent, une méthode à 1 pas est d’ordre p si et seulement si  :
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où K ne dépend que de y et de f. 

Pour ce type de méthode, on peut montrer que l’erreur commise, i.e. , l’écart 
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à la vraie solution : 
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Les méthodes de Runge-Kutta propagent une solution sur un intervalle en combinant les informations provenant de plusieurs pas de calculs de type de ceux mis en œuvre dans le processus de Euler. Ces informations servent à apparier un développement de Taylor au voisinage de la solution jusqu'à un ordre plus élevé que celui obtenu par les processus de Euler. A titre d’exemple, détaillons les calculs pour une méthode d'ordre 2 :
Soit une fonction f. Par le développement de Taylor, on obtient  : 
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Donc :
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or : 
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Donc :
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Soit : 
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Posons : 
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Il vient : 
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On choisit :

[image: image41.wmf](

)

(

)

(

)

)

x

(

y

,

x

f

2

h

)

x

(

y

,

x

f

h

);

x

(

y

;

x

)

1

(

×

+

=

j


Donc :
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Autrement dit :
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Pour cette fonction 
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 on a obtenu une meilleure précision. Cependant, cette fonction est difficile à évaluer car il faut les dérivées de f  par rapport à x et y. C'est pourquoi on cherche 
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 ne dépendant que de f et pas de ses dérivées. Pour cela, on recherche 
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 de la forme :
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Il faut donc déterminer les 4 paramètres
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 pour conserver une précision d'ordre 2. Pour cela, on repart de 
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Par développement de Taylor, 
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En ne gardant que les termes de premier ordre, on finit par obtenir :
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Donc :
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On souhaite que le terme de droite se réduise à 
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. On peut donc en déduire les valeurs des paramètres :
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La solution n'étant pas unique (le paramètre a est indéterminé), on aboutit à une famille de méthodes de la forme :
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Remarques

a = 1 correspond à la méthode d’Euler modifiée

a = 
[image: image59.wmf]2

1

 correspond à la méthode d’Euler-Cauchy, connue également sous le nom de méthode de Henn

Dans la pratique, on utilise plus souvent la méthode de Runge-Kutta d'ordre 4 dont l'erreur est 
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 se fait de la même manière que pour l'ordre 2 mais en beaucoup plus complexe!! On arrive à :
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avec :
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L’avantage d’une telle méthode est que l’on peut relativement facilement mettre en place une stratégie d’intégration à pas variable. 

Pourquoi ? Il est relativement clair que plus le pas sera petit, meilleure sera l’approximation de la courbe intégrale. Néanmoins, il faut garder à l’esprit qu’un calcul se doit d’être efficace. Ainsi, si l’intervalle d’intégration est grand, il est opportun de mettre en place une technique permettant d’augmenter ce pas. 

Soient l’équation différentielle 
[image: image64.wmf](
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 les fonctions correspondant respectivement aux méthodes de Runge-Kutta d’ordre 4 et 5. Supposons maintenant qu’on ait intégré notre équation jusqu’au point 
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 par la méthode d’ordre 4 et calculons :
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 EMBED Equation.3  [image: image71.wmf](
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Ce qui revient à dire que l’on est capable de calculer l’erreur que l’on commet à chaque pas. Donc, on peut envisager ce schéma : En 
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, on double le pas en cours (h = 2.h), on calcule E. Si (E) est supérieur à une précision que l’on s’est fixée initialement (
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), on conserve cette nouvelle valeur du pas. Sinon, on le divise le pas par 2 jusqu’à ce que E soit inférieur à 
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2. Méthodes à pas liés

a) Nyström

On subdivise l'intervalle d'intégration 
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 en N sous-intervalles de longueur égale 
[image: image76.wmf]N

a

b

h

-

=

, délimités par les points de subdivision 
[image: image77.wmf]h

n

a

x

n

×

+

=

, 
[image: image78.wmf]1

N

;...;

1

;

0

n

-

=

. Pour chaque abscisse 
[image: image79.wmf]n

x

, on calcule une valeur approchée 
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 de la vraie valeur 
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Pour cela, on considère la droite de pente 
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 est l'ordonnée du point de cette droite d'abscisse 
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On applique alors pour le calcul du premier point une méthode à pas lié (présentée plus haut), puis :
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b) Euler implicite

On subdivise l'intervalle d'intégration 
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 en N sous-intervalles de longueur égale 
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. Pour chaque abscisse 
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Pour cela, on considère la droite de pente 
[image: image96.wmf](

)

n

n

y

;

x

f

 passant par le point 
[image: image97.wmf](

)

n

n

y

;

x

 ; Cette droite est parallèle à la tangente à la courbe intégrale passant par 
[image: image98.wmf](

)

1

n

1

n

y

;

x

+

+

. La valeur de 
[image: image99.wmf]1

n

y

+

 est l'ordonnée du point de cette droite d'abscisse 
[image: image100.wmf]1

n

x

+

. On applique alors :


[image: image101.wmf](

)

1

n

n

n

1

n

y

;

x

f

h

2

y

y

+

+

×

×

+

=




[image: image102.wmf]1

N

;...;

1

;

0

n

-

=


C'est une équation en 
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 qu'il faut résoudre à l'aide d'une méthode numérique.

c) Adams-Bashford-Moulton

On subdivise l'intervalle d'intégration 
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. Pour chaque abscisse 
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Pour cela, on utilise la propriété suivante : 
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On approche 
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 (formule explicite de prédiction) : on fait une estimation de 
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 (formule implicite de correction) : c’est une équation en 
[image: image118.wmf]1

n

y

+

 qu’on résout en prenant 
[image: image119.wmf]0

1

n

y

+

 pour valeur d’initialisation.

On démarre par une méthode adaptée pour le calcul de 
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· Formule de prédiction : 
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· Formule de correction
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B. Autres types de problèmes

1. Problème de conditions limites

On subdivise l'intervalle d'intégration 
[image: image127.wmf][

]

b

;

a

 en N sous-intervalles de longueur égale 
[image: image128.wmf]N

a

b

h

-

=

, délimités par les points de subdivision 
[image: image129.wmf]h

n

a

x

n

×

+

=

, 
[image: image130.wmf]1

N

;...;

1

;

0

n

-

=

. Pour chaque abscisse 
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, on calcule une valeur approchée 
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 de la vraie valeur 
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 de la fonction y. Ces cas correspondent à des équations différentielles d’ordre 2.
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La formule de Taylor permet d'écrire: 
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On remplace y’ et y'' dans l'équation différentielle par l'approximation obtenue en négligeant les termes en h2. 

On résout le système linéaire de N-1 équations et N-1 inconnues (y0 et yN donnés). 
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On peut appliquer cette technique de discrétisation aux équations aux dérivées partielles. Ils existe plusieurs classes de problèmes pour lesquelles des méthodes particulières ont été développées (Cranck-Nicholson, Euler implicite, Euler explicite, etc …).

2. Systèmes différentiels

a) Systèmes d’équations différentielles

Ils se peuvent se présenter sous deux formes : 

Forme canonique : 
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Forme résiduelle : 
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Les méthodes semblables à celles présentées dans la partie A s’applique à de tels systèmes. On peut noter que les équations différentielles d’ordre n peuvent se réécrire sous la forme d’un système différentiel de dimension n, i.e., cas n = 2 : 
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b) Systèmes algébro-différentiels (Gear)

Globalement, le problème à résoudre peut se ramener à l’expression suivante :




s : vecteur des variables ;

t : variable de temps ;

p : vecteur des paramètres de fonctionnement ;

f : modèle en régime permanent ;

D : matrice des coefficients des termes différentiels.

Le principe de la méthode de Gear consiste à transformer le système d’équations différentielles algébriques (E.D.A.) en un système d’équations algébriques non-linéaire. C’est une méthode de type prédicteur-correcteur.

A partir du point courant connu 

, une phase de prédiction (schéma explicite) permet d’initialiser la phase de correction. Dans cette phase dite de correction, une estimation de la dérivée au point que l’on veut calculer

est donnée par : 
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où :

h est le pas de temps ;

un paramètre de la méthode dépendant de son ordre ;

une fonction des états précédents, donnant des informations sur le passé de s. Sa forme dépend également de l’ordre choisi.

Cette approximation permet de transformer le système en :
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qui est un système algébrique non-linéaire à résoudre au temps 

 par une méthode itérative de type Newton-Raphson. Ce qui conduit à résoudre à chaque itération du correcteur le système linéaire associé, en posant 

:
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J désigne la matrice Jacobienne des fonctions résiduelles f du modèle en régime permanent. M définit l’opérateur dynamique. Cette méthode exige la connaissance de toutes les variables ainsi que de leurs dérivées au temps initial. Elle s’avère très efficace pour des problèmes dits raides (couplages de phénomènes ayant des constantes de temps très différentes).

c) Homotopie et continuation

C’est une technique de résolution permettant d’obtenir toutes les solutions possibles d’un système d’équations algébriques. Soit F(X) = O, où F est une fonction vectorielle des éléments du vecteur X. On construit la fonction homotopie H, telle que :
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On remarque que pour t = 0 et t = 1, la fonction ainsi définie est nulle. Le principe de la continuation va consister à écrire que H est une différentielle totale sur la trajectoire correspondant à H =  0. Ainsi, à chaque fois que t sera dans le voisinage de 1, X sera le voisinage d’une solution de F. L’équation différentielle à prendre en compte  découle de la dérivation de H par rapport à l’abscisse curviligne : 
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