Greg Peterson
Page 13
07/01/99

Proposed Language Requirements for Object-Oriented Extensions to VHDL

Gregory D. Peterson

FTL Systems, Inc.

gdp@vhdl.org

July 1999

Introduction

In the ten years VHDL has been available, designers have faced and exploited tremendous growth in the size and complexity of systems. The software engineering community has largely adopted object-oriented design and programming methodologies as a means of improving productivity. Quite naturally, the IEEE Design Automation Standards Committee includes a study group tasked with investigating object-oriented extensions to VHDL group. This group hopes to bring many of the advances in software engineering technology to hardware design, with a particular focus on object-oriented language capabilities.

The study group for object-oriented extensions to VHDL (OO-VHDL) has existed for a number of years and numerous proposals have been discussed. Currently, there exist at least two proposed implementation approaches to achieving the needed object-oriented modeling capabilities with VHDL extensions. Depending on what one determines to be the requirements for OO-VHDL and the relative priorities of these requirements, the best language design approach can be determined.

The OO-VHDL study group has a design objectives document, which is based on one of the proposed implementations. Given that one frequent criticism of the OO-VHDL group has been it espouses a solution looking for a problem, general agreement on a set of language requirements must occur to prevent the efforts of the group from becoming irrelevant. Although the existing design objectives document does a good job of characterizing the Objective VHDL project’s goals, one can question the underlying language requirements, the implementation choices and priorities given, or whether the passage of time may necessitate modifications to the requirements or their priorities. The author, having made such a suggestion, faced the resulting task of creating a better (strawman) collection of requirements. Please note the purpose of this document is to attempt to explicitly state (hopefully) all the characteristics (requirements) needed for a successful object-oriented VHDL; it is certainly not to evaluate any of the proposals to date.

Listing a complete set of requirements for object-oriented extensions to VHDL, a rationale for each requirement, and discussing its relative priority is not a simple task. Nonetheless, the object-oriented VHDL group needs to understand the tradeoffs and relative strengths of particular language proposals as they pertain to an independent collection of requirements. In other words, these requirements define the problem the extensions intend to address.

In order to affordably and quickly develop electronic systems one needs to be able to develop specifications for the product which include all important aspects of the design, manufacturing, and sustainment of the fielded product. During the Department of Defense’s Very High Speed Integrated Circuit (VHSIC) program, the VHSIC Hardware Description Language (VHDL) development began to address essentially these needs. A perusal of the DoD Requirements for Hardware Description Languages, dated January 1983, provides interesting insight into the problems originally addressed by the VHDL development effort. These requirements from the beginning of the VHDL development can be loosely categorized into three areas: purpose/domain of use requirements, language capability/expressibility requirements, and usability/implementability requirements. The VHDL requirements from this document include:

Language purpose/domain

· Ability to support high level design/top-down design

· Can be processed via design automation tools for

· Simulation

· Synthesis

· Software development

· Testing

· Physical design

· Translatable to other HDLs

· Portable to different operating systems and machines

· Upwardly extensible to interface with high level system description languages (SDLs)

· Enhances reliability

· Enhances maintainability

Language capability/expressibility

· Supports hierarchy

· Supports abstraction

· Supports collections of related objects

· Modularity

· Supports libraries

· Strongly typed with type checking

· No implicit type conversion

· Variant types

· Supports encapsulations

· Supports exceptions

· Communications only via I/O lists

Language usability/implementability

· Efficiency

· Simplicity

· Implementability

· Machine independence

· Parallel processing

This list of requirements is quite remarkable; particularly when one considers that many of the current difficulties or deficiencies with VHDL come from inadequate coverage of these requirements. A principal area neglected in these requirements is in the area of object-oriented design and programming capabilities. In particular, capabilities such as enhanced reuse, extensibility (inheritance), polymorphism, and late or dynamic binding need to be considered for inclusion in OO-VHDL.

How will one use OO-VHDL?

The question perhaps most important to consider when gathering these requirements is what domains are expected to use and (hopefully) will be helped by object-oriented extensions to VHDL. Any number of language constructs or capabilities may be novel or perhaps tremendously useful in obscure problem domains, but the general applicability and practicality of the proposed language changes must be addressed. The problem domains in which one will employ an object-oriented VHDL should be identified and considered to gain insight into the engineering tradeoffs necessary in listing requirements and relative priorities for the eventual language design. Perhaps the most pragmatic concern should be the economic viability of an enhanced VHDL and the likely consumer demand.

The author bases his assumptions on the requirements and applicability of object-oriented VHDL on several resources: numerous discussions; a variety of proposals for object-oriented enhancements to VHDL; the requirements developed for VHDL, other hardware description languages, and object-oriented software languages; references on language definition and implementation; and the author’s personal perspectives.

In the author’s experience with design automation tools, methodologies, and designers, by far the most important consideration for a simulation tool is performance, followed by cost. Issues such as language compliance to standards, the quality of the user interface, and ease of use, although important, do not warrant the level of interest given to raw performance. Given this very pragmatic economic consideration, the performance of object-oriented VHDL tools must be close, if not superior, to the performance of existing VHDL design automation tools. Similarly, the tardiness in tool vendors providing support for VHDL-93 demonstrates the importance in considering tool implementation issues.

Creating extensions that co-exist with legacy tools and models minimizes the initial cost of adoption for users and tool vendors. Consequently, the OO-VHDL must support existing VHDL infrastructures. This also is an argument for OO-VHDL extending VHDL and not removing or changing language features (or warts), no matter how tempting. The same argument can be extended to the consideration of VHDL’s related standards.

With the widespread use of synthesis as a productivity enhancement tool, gate level modeling is no longer a task for humans; synthesizers automatically generate these models. As behavioral synthesis capabilities improve, register transfer level models will become increasingly machine generated. Object-oriented extensions to VHDL focused on gate or register transfer level design will add little benefit to machine generated VHDL code or designer productivity. In contrast, inserting object-oriented design capabilities into the specification or architectural definition phase of system or hardware design flow promises significant productivity gains. Targeting specification and architectural definition also positions the technology into the area where designers must update their design methodology, hardware or description languages, and design automation tools. Such an approach maximizes impact and likelihood of success.

Assuming the most promising domain for OO-VHDL is in system specification or design, the need for better abstraction support becomes clear. The use of VHDL performance modeling illustrates the need for enhanced abstraction, communications mechanisms, and dynamic creation and destruction of tasks. Not only will this better support the abstract modeling of systems with data-less tokens, it will also narrow the semantic gap between VHDL and common programming languages and practices.

The underlying requirement for better abstract modeling, support of synthesis, and numerous other requirements is to provide better productivity for the designer. Not only should OO-VHDL help with creating designs, it should also help in the reuse of designs and in the maintenance of products. As hardware design becomes increasingly complex with shortening design cycle times, designer productivity must improve to keep pace. Borrowing the most effective software engineering techniques related to object-oriented design and programming seems promising as a means of providing the needed productivity improvements. Note that this is not the same as supporting the formats and representations used in systems and software engineering, although support for such representations will improve productivity by enabling easier communications between the systems, hardware, and software engineering teams.

When reading about programming language design, one often sees a number of requirements for a high quality language implementation. Among these requirements are consistency, accuracy, simplicity, completeness, efficiency, and being well-defined. Such requirements should be included because it is almost a tautology that good languages attempt to meet these requirements, although they often seem to be conflicting.

Based on these considerations for OO-VHDL, the author collected the following list of requirements, with updates based on feedback at the June 25, 1999 meeting of the OO-VHDL study group:

Requirements list:

1. Compatibility with VHDL and legacy models

2. Compatibility with systems engineering/software engineering representations

3. Support hardware/software co-design and co-verification

4. Supports synthesis

5. Simulatable

6. Upwardly extensible

7. Support for VHDL-AMS

8. Ability to support high level design

9. Implementation neutral representations (including HW/SW neutral)

10. Support partial definitions and incremental design (polymorphism, dynamic binding, type genericity)

11. Abstraction (of data, concurrency, communications, timing)

12. Relaxed timing and typing in controlled manner

13. Improved encapsulation

14. Improved information hiding

15. Able to specify interfaces as well as objects/entities

16. Improved productivity

17. Support reuse

18. Provide simulatable specification capabilities

19. Documentation

20. Readable

21. Concurrence

22. Exceptions

23. Dynamic process creation and destruction

24. Accurate

25. Complete

26. Simplicity

27. Efficient

28. Clean integration of capabilities

29. Well defined

30. Extensions are unique and consistent

31. Portable

32. Translatable

33. Ease of use

34. Easily learned

35. Ease of compilation/synthesis/optimization

36. Implementability

37. Parallelizability

This list of requirements helps to delineate what general capabilities the design automation community needs in an OO-VHDL. The list can be loosely grouped into three categories: existing or emerging design automation infrastructure issues (1-9), problem domain or advanced design methodology aids (10-23), and general language issues (24-37). These requirements are not ordered with respect to priority. A more detailed description of each requirement is included in Appendix B, as requested by the members of the OO-VHDL study group. Feedback from the community is welcome to improve this list of requirements.

Conclusions

Increasing demands on designer productivity may best be met by careful inclusion of object-oriented extensions to VHDL. The development of these extensions must be carefully considered in the context of existing and emerging design methodologies, design automation tools, and emerging problem areas such as systems specification and architectural design. This document considers previous requirements for VHDL, the potential application domain for OO-VHDL, and general language design considerations to collect a list of requirements. Once again, please note the purpose of this document is to attempt to explicitly state the characteristics (requirements) needed for a successful object-oriented VHDL; it is certainly not to evaluate any of the proposals to date.

With a collection of requirements gathered, discussed, modified, and approved by the OO-VHDL study group, the best approach to meeting these requirements can be determined. This list is meant to generate discussion and to begin the process towards a complete collection of requirements, perhaps with associated priorities.

The author wishes to acknowledge the inputs of a wide range of people. In no particular order, they include: Mike Mills, John Hines, Judith Benzakki, Peter Ashenden, Ron Waxman, Doug Dunlop, Dave Barton, John Willis, Wolfgang Ecker, Wolfgang Nebel, Serafin Olcoz, Steve Bailey, Jean-Michel Berge, Phil Wilsey, Marin Radetzki, Kamal Hashmi, Jim Heaton, Alessandro Balboni, Sowmitri Swamy, Wolfram Puyzke-Roming, Guido Schumacher, Dale Martin, Paul Menchini, Sanjaya Kumar, and Jean Mermet. I am indebted to each of you and apologize to any I may have omitted.

References:

[1] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading, MA. 1986.

[2] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan-Kaufmann, San Francisco, CA. 1996.

[3] Peter J. Ashenden and Martin Radetzki. “A Comparison of SUAVE and Objective VHDL.” White paper for IEEE DASC Object-Oriented VHDL Study Group. December 1998.

[4] J. Benzakki and B. Djafri. “Object Oriented Extensions to VHDL, the LAMI Proposal.” Proceedings of Conference on Hardware Description Languages ’97, pages 334-347. April 1997.

[5] Judith Benzakki and Bachir Djafri. “Reflexions on Object Oriented Extensions to VHDL Proposals.” Presentation for IEEE DASC Object-Oriented VHDL Study Group. June 1996.

[6] J.-M. Berge, W. Nebel, and W. Putzke. “Requirements and Design Objectives for an Object-Oriented Extension of VHDL (OO-VHDL).” White paper for IEEE DASC Object-Oriented VHDL Study Group. June 1996.

[7] Grady Booch. Object-Oriented Design. Benjamin Cummings, Redwood City, CA. 1991.

[8] David Cabanis, Sa'ad Medhat and Nick Weavers. “Object-Orientation Applied to VHDL Descriptions”. Proceedings of Spring 1995 VHDL International Users’ Forum. San Diego, CA. April 1995.

[9] Tom A. Cargill. “The Case Against Multiple Inheritance in C++.” USENIX Computer Systems. Vol. 4, No. 1, 1991.

[10] Doug Dunlop. “VHDL ‘Structure Varying’ Signals and OO Extensions to the VHDL Type System.” White paper for IEEE DASC OO-VHDL Study Group. July 1995.

[11] Douglas D. Dunlop. “Object-Oriented Extensions to VHDL.” Proceedings of Fall 1994 VHDL International Users’ Forum. Washington, D.C. October 1994.

[12] Wolfgang Ecker. “An Object-Oriented View of Structural VHDL Description.” Proceedings of Spring 1996 VHDL International Users’ Forum. Santa Clara, CA. April 1996.

[13] C.A.R. Hoare. “Hints on Programming Language Design.” Stanford Artificial Intelligence Laboratory Memo AIM-224 (also STAN-CS-73-403). December 1973.

[14] Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf. “Object-Oriented Techniques in Hardware Design.” IEEE Computer, pp. 64-70. June 1994.

[15] Eric Laquer. “Object-Oriented System Engineering: A Method for Managing VHDL Development.” Proceedings of Fall 1995 VHDL International Users’ Forum. Boston, MA. October 1995.

[16] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Englewood Cliffs, NJ. 1992.

[17] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs, NJ. 1988.

[18] Michael T. Mills. “Proposed Object-Oriented Programming (OOP) Enhancements to the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL).” US Air Force Wright Laboratory Technical Report WL-TR-93-5025. August 1993.

[19] Michael T. Mills. “A Minor Syntax Change to VHDL Yields Major Object Oriented Benefits.” White paper for IEEE DASC OO-VHDL Study Group. October 1995.

[20] Wolfgang Nebel, Wolfram Putzke-Roming, and Martin Radetzki. “Object Orientation and VHDL.” VHDL 2000 Workshop. Paris, July 1997.

[21] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading, MA. 1994.

[22] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA. 1997.

[23] Sowmitri Swamy, Arthur Molin, and Burt Covnot. “OO-VHDL Extensions to VHDL.” IEEE Computer, pp 18-26. October 1995.

[24] Ada 95 Rationale: The Language and Standard Libraries. International Standard ANSI/ISO/IEC-8652:1995. January 1995.

[25] Department of Defense Requirements for Hardware Description Languages. January 1983.

[26] Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Weapon Systems, Command and Control Systems, Management Information Systems. Department of the Air Force Software Technology Support Center. Version 2.0. June 1996.

[27] IEEE Std 1076-1987: IEEE Standard VHDL Language Reference Manual. Institute of Electrical and Electronic Engineers, Inc. New York, NY. 1988.

[28] IEEE Std 1076-1993: IEEE Standard VHDL Language Reference Manual. Institute of Electrical and Electronic Engineers, Inc. New York, NY. 1994.

Appendix A: June 1996 Design Objectives

[Note - The following are the design objectives as developed by the Objective VHDL development group and presented to the IEEE DASC OO-VHDL Study Group (edited only for formatting). They are included for the convenience of the reader.]

This chapter tries to identify necessary extensions to VHDL in order to cover the specified requirements from the previous chapter. Further it is intended to keep these possible extensions consistent with the direction of the DASC object-oriented study group (IEEE standardization).

VHDL provides many good features and support efficient design methodology. There are anyway certain limitations in the power of the language which can be (at least partially) addressed by object oriented extensions.

Furthermore there are three criteria for a final selection of object-oriented features represented by the design objectives (DO). For the success of Objective VHDL it is necessary that each criterion can be fulfilled.

•
accepted by the user community because the object-oriented extensions reflect their needs.

•
accepted by the tool vendors because they have to provide an implementation of these extensions at reasonable costs.

•
accepted by the standardization body because so it can be ensured that Objective VHDL isn’t in conflict with the VHDL paradigms or other standardization directions. Further this helps to enhance the acceptance of (Objective) VHDL.

This chapter tries to identify these different objectives and to sort them into two categories: high priority and low priority. The semantics of these categories is the following:

•
high priority objectives have to be considered first. If one of these objectives cannot be reached, we have to justify by significant difficulties to implement it.

•
low priority objectives have to be considered second. They have to be implemented only if the cost of implementation is extremely low.

1 High priority design objectives (no order in the following DOs)

•
Add class concept to VHDL

Rationale: A class concept has to deal with mechanisms for abstraction and encapsulation suitable for an object-oriented approach.

VHDL provides such mechanisms but they are not sophisticated enough for an object-oriented approach. (packages are weak for encapsulation, entities are weak for abstraction)

Requirements for a class concept:

-
possibility to define attributes (state)

-
possibility to define methods (behavior)

-
encapsulate an object from outside (visibility)

-
abstraction (the functionality and way to use an object is clear from the class

specification)

-
allow abstract classes

-
easy to use

-
should not be too far away from current VHDL

-
easy to understand for designers

-
possibility to use it in combination with Standard VHDL

- easy to implement

- suitable for high level modeling

•
Add inheritance mechanism(s) to VHDL.

Rationale: VHDL does not allow to incrementally modify existing "objects" (i.e. entities, types, etc.) to create other ones which are only slightly different. This requires that one has to write two (or more) complete parts of code with all the implications in terms of source code testing and validation.

The key issue is to avoid this copy & paste coding method.

Inheritance mechanism lets a current class inherit from another class called mother class (and implicitly from all its mother's ancestors). Inheritance is a way to improve reusability, it is a static mechanism (before simulation), and should trigger at least (multiple inheritance is low priority DO) :

-
inheritance of all methods of mother class

-
inheritance of all attributes of mother class

-
redefining of an existing method of the mother class

-
adding of a new method to the current class

-
adding of a new attribute to the current class

•
Method call or message passing.

Rationale: The only communication mechanism of VHDL today is based on the signal semantics. At a high level of abstraction, dealing with this communication mechanism very often implies to know which protocol will be used to exchange data and to code it in terms of signal assignments. This results in over-specification and restricts the scope of application of VHDL.

Communication in Objective VHDL has a higher level of abstraction which only requires the target 's object name, the method to be called and its parameters.

•
Add type polymorphism to VHDL.

Rationale: The strong typing is certainly an excellent mechanism to guaranty a high level of safety of the code, the possibility to explicitly inhibit (at least partially) this mechanism has nevertheless to be considered for different reasons:

-
From the very beginning of the design cycle (the very first "specification") to the implementation (the "synthesizable" description), the type of data is usually refined. This leads to many problems: introduction of conversion functions, modification of interface types (ports or generics) with all the consequences on encapsulation.

-
Furthermore, a strong typing at a high level of abstraction implies very often to give more information than necessary at this level of abstraction in order to prepare the compatibility with lower levels. This means over-specification.

-
Finally, strong typing also leads to bad reusability of code by development of the same algorithms working on different (but often closely related) types. It might be interesting to verify at compilation time type compatibility; for example a 6 bits integer may be extended to a 8 bits integer.

•
Keep VHDL concurrence.

Rationale : One of the strongest aspects of VHDL is its ability to manage both sequential world and concurrent world. Objects should keep this quality. (i.e. : objects shouldn't be considered as a single process)

•
Add class libraries to VHDL

Rationale: One of the main benefits of object-oriented techniques used in the software domain is the high degree of reusability that libraries of objects can provide. Five kinds of "design units" are the basic elements of current VHDL libraries, none of them can be considered as "pure object" or "pure class" (entity/architecture are not flexible enough and packages cannot be instanciated). Extensions have to be made in this domain.

•
Easiness of use, methodology

Objective VHDL should fit the hardware view of the system and be usable by Hw/Sw designers.

One of the most important aspects of the object oriented development is a strong need for a complete methodology.

2 Low priority design objectives: (no order in this list)

•
Add Broadcasting to VHDL.

One of the main characteristics of object level communication is that you only need to know the name of an object (ant the path itself as in VHDL signal communication). Broadcasting is a way to communicate to a set of other objects without knowing their names.

•
Add Dynamic creation/disappearance of "objects".

An object may not exist from the beginning to the end of the simulation.

•
Multi-Inheritance.

This is the feature to inherit from more than one class. Multi-inheritance implies to define how to solve inheritance conflicts (for example: inheriting twice the same attribute).

•
Add an exception mechanism

Exceptions are a control mechanism existing in other languages. They are very often used to interrupt a regular treatment to execute specific error treatment. A general “reset” section may be an example of the exception mechanism in hardware...

•
Better documentation capabilities

This concerns at least to two purposes:

-
Make it easier to find the adequate model/object one need in a library of reusable models/objects.

-
Allow an easier understanding of program code or designs. This can be very important if an old design needs changes in functionality.

Remark (synthesis):

Although synthesizability is a very useful requirement for the automation of the design flow this demand gives serious restrictions to the process of the definition of the design objects. Adding or defining a DO is a rather abstract process. Thinking of the synthesizability of such a DO (concept) belongs to the concrete implementation.

Appendix B: Requirements and Rationale

[Note – At the OO-VHDL study group meeting on June 25, 1999, the requirements listed here were presented and debated. To better understand the intended meaning underlying each of these requirements, the author was asked to include a paragraph describing the rationale and intended meaning of each requirement. It seems likely that not every requirement can be met completely; nonetheless, the object oriented VHDL development community should carefully weigh each design requirement and the extent to which each can be met by any proposed language design.]

Requirements list:

1. Compatibility with VHDL and legacy models

Given the large installed base of VHDL users, models, and tools, object-oriented extensions to VHDL must maintain compatibility with VHDL and legacy models to ensure its economic viability. Like the analog and mixed-signal extensions to VHDL and the 1993 update to VHDL, the object-oriented extensions to VHDL should, to the extent possible, run all legacy VHDL models. With the exception of new reserved words invalidating existing VHDL models, compatibility with VHDL should be provided.

2. Compatibility with systems engineering/software engineering representations

The object-oriented extensions to VHDL should improve the capability to perform abstract modeling, exchange information with systems engineering or software engineering representations, or migrate functionality between domains such as hardware and software. Given the prevalence of object-oriented design techniques for the systems and software engineering disciplines, OO-VHDL should be designed with the exchange of design data into or from OO-VHDL in mind.

3. Support hardware/software co-design and co-verification

By extending VHDL with object-oriented capabilities, hardware models in OO-VHDL should be more easily understood by hardware or software engineers familiar with object-oriented design and programming. This narrowing of the “semantic gap” between hardware and software representations should enable better support of hardware/software co-design and co-verification. The language design should be made in consideration of the potential for exchanging descriptions or migrating functionality between hardware and software, for providing better support for modeling/executing (co-simulating) the hardware and software components of an electronic system, and for supporting hardware/software design automation.

4. Supports synthesis

Give the need for improved designer productivity and current importance of synthesis, the object-oriented extensions to VHDL should be designed with automatic synthesis in mind. Behavioral as well as logic synthesis should be supported. Language constructs that are difficult to synthesize should be avoided; e.g., unlimited recursion should be avoided and static elaboration should be made possible.

5. Simulatable

Models developed in OO-VHDL should be simulatable, such that designers can exercise the functionality described in the model for verification. The OO-VHDL code should provide sufficient information to allow verification of the design by simulation or equivalent tools ranging from abstract functional models through register-transfer through gate level.

6. Upwardly extensible

The language should be extensible, with the ability to extend the language to cover new concepts, add new language structures, or support the definition of a design “environment” in specific domains.

7. Support for VHDL-AMS

With the recent completion of standardization for VHDL-AMS and its emerging modeling and tool base, OO-VHDL should avoid implementation choices which preclude, or make inordinately difficult, the application of object-oriented extensions to VHDL-AMS. Behavioral modeling in VHDL-AMS using object-oriented extensions holds similar potential benefits as the proposed object-oriented extensions to VHDL for digital hardware modeling.

8. Ability to support high level design

In order to serve as a design tool for a top-down methodology, the OO-VHDL should allow the designer to deal with elements of the design at a very abstract level at the high levels of system description. The designer should be able to defer decisions on implementation to later design stages [25].

9. Implementation neutral representations (including HW/SW neutral)

Models developed in OO-VHDL should not be overly constrained with respect to potential implementations. To the extent possible, the language should enable implementation neutral modeling of hardware behavior. Given the potential for migrating functionality between hardware and software, the language should support modeling functionality in a hardware/software neutral manner.

10. Support partial definitions and incremental design (polymorphism, dynamic binding, type genericity)

In order to serve as a design tool for a top-down methodology, the OO-VHDL should allow the designer to develop abstract models of behavior that can be extended or refined. The language should support abstract modeling by exploiting common object-oriented design and programming capabilities such as polymorphism, dynamic binding, and type genericity to provide better refinement, better reuse, and to avoid over-specification.

11. Abstraction (of data, concurrency, communications, timing)

The object-oriented extensions to VHDL should support improved abstraction capabilities for modeling. The language should support more abstract notions of data, concurrency, communications, and timing.

12. Relaxed timing and typing in controlled manner

As embodied by the IEEE DASC System and Interface based Design study group, interface based design methodologies promise productivity improvements. The OO-VHDL should support interface based design by allowing relaxed timing and typing for abstract modeling of communications and performance modeling. Such relaxation should only occur in a controlled manner.

13. Improved encapsulation

OO-VHDL should support improved encapsulation to limit access to the implementation details of primary units.

14. Improved information hiding

The object-oriented extensions to VHDL should support improved information hiding to simplify models, to isolate changes made to models, and to ease in model understanding.

15. Able to specify interfaces as well as objects/entities

The object-oriented extensions to VHDL should support the capability to define the interface between objects/entities as well as the functionality associated with specific objects/entities. The ability to separate and refine interface functionality will improve abstract modeling capabilities and better support interface based design methodologies.

16. Improved productivity

A primary motivation for extending VHDL with object-oriented design and programming capabilities is to exploit similar productivity advances in software engineering. OO-VHDL will help improve designer productivity in electronic product design, implementation, integration, verification, maintenance, and/or upgrade.

17. Support reuse

Reuse is a critical means to achieving improved designer productivity. The object-oriented extensions to VHDL should support the reuse and refining of existing models.

18. Provide simulatable specification capabilities

In order to define a data set package including all the necessary information for maintaining, reusing, or refining a system, the notion of a simulatable or executable specification was defined. OO-VHDL should support the development of a simulatable specification by supporting the precise and accurate documentation of electronic systems behavior, a testbench representing environmental behavior, and test vectors.

19. Documentation

Models developed in OO-VHDL should provide good documentation for the operation of the electronic system being designed. Documentation should be considered a critical aspect of the design process and the design language.

20. Readable

Models developed on OO-VHDL should be easily readable and understandable. The language will encourage and assist the designer to write clear, self-documenting code. The readability of programs is immeasurably more important that their writeability [13].

21. Concurrence

The object-oriented extensions to VHDL should maintain the model of concurrence of VHDL. Given the inherent concurrent operation of physical hardware components such as gates, OO-VHDL should maintain the capability of VHDL to model the concurrent behavior of entities.

22. Exceptions

See codesign references here. There shall be an exception handling mechanism for responding to unplanned error situations detected during simulation. The exception situations shall include errors detected by hardware, software errors detected during simulation, error situations in built-in operations, and user-defined exceptions [25].

23. Dynamic process creation and destruction

In order to better support modeling testbenches, integration with software, abstract modeling, and reconfigurable computing, OO-VHDL should support dynamic process creation and destruction. In the case of modeling hardware behavior on reconfigurable computing platforms, designers find VHDL inadequate for representing the runtime remapping of functions onto FPGA hardware because VHDL processes can not be dynamically created or destroyed. Similarly, abstract modeling and performance modeling of applications such as communications traffic on hardware systems is unwieldy or impractical with VHDL due to the static existential nature of processes. More expressive and powerful testbench creation and better integration with software systems will be enabled by adding the capability to dynamically create and destroy processes within OO-VHDL.

24. Accurate models

Models written in OO-VHDL should be precisely, unambiguously described so that the designer can exactly predict the behavior when executed. Nondeterministic or undefined behavior should be disallowed, except as intended by the designer. Side effects should be minimized, implicit type conversions disallowed, and other language capabilities with nonportable or unpredictable effects avoided.

25. Completeness

The object-oriented extensions to VHDL should allow for the complete description of hardware. To properly document (and potentially transfer) a given design, each of its design entities must be represented by its complete I/O interface and one its alternative descriptions. If any reference is made to a library description, such description is considered part of the design [25].

26. Simplicity

The language should not contain unnecessary complexity. It should have a consistent semantic structure that minimizes the number of underlying concepts. It should be as small as possible, consistent with the needs of the intended applications. It should have few special cases and should be composed from features that are individually simple in their semantics. The language should have uniform syntactic conventions and should not provide several notations for the same concept. No arbitrary restriction should be imposed on a language feature [25].

27. Efficient

The OO-VHDL language should be efficient with respect to its verbosity and its performance, particularly with respect to simulation. The language design should aid the production of efficient behavioral descriptions. Constructs that have unexpectedly expensive implementations should be easily recognizable by translators and by users. Where possible, features should be chosen to have a simple and efficient implementation in any host machines, to avoid execution costs for available generality where it is not needed, to maximize the number of safe optimizations available to translators, and to ensure that unused and constant portions of programs will not add to execution costs [25]. To the extent possible, language constructs should be implemented and tested to ensure their efficiency. As Hoare suggests, one thing a language designer should not do is to include untried ideas of his own. His task is consolidation, not innovation [13].

28. Clean integration of capabilities

The language capabilities of OO-VHDL should be cleanly integrated, with unique language capabilities kept as orthogonal as possible. Special cases and exceptions should be avoided. General approaches and philosophies of VHDL should be maintained to the extent possible.

29. Well defined language

The object-oriented VHDL language should be well defined and precise. The language shall have a complete and unambiguous defining document. It should be possible to predict the possible actions of any syntactically correct description from the language definition. [25]

30. Extensions are unique and consistent

The object-oriented extensions to VHDL should provide one good way to express every operation of interest; it should avoid providing two or more, thus providing unique instantiations of language features. Similarly, consistency should be applied to the extent possible to provide uniform language syntax and semantics. Exceptions and special cases should be avoided to the maximum extent possible.

31. Portable

Because OO-VHDL will be used as a means of transmitting design data between engineers, models written in the language must be portable. Portability requires that OO-VHDL data be deliverable in both machine-readable and in textual form. Language features should be avoided which preclude model development, translation, or execution with particular architectures or operating systems.

32. Translatable

No legal restrictions on the OO-VHDL should preclude its translation into another HDL, including VHDL. This requirement is not intended to imply a mandatory preprocessing or other translation capability into VHDL.

33. Ease of use

The OO-VHDL language should be made easy for designers to use in modeling from abstract to detailed models. To the maximum extent possible, design automation processing of OO-VHDL models should be considered.

34. Easily learned

OO-VHDL should be defined such that it is easily learned by designers, particularly those with some experience with VHDL and in object-oriented design and programming.

35. Ease of compilation/synthesis/optimization

Models written in OO-VHDL should be easily compiled, synthesized, optimized. Baroque language constructs which are difficult or impossible for language processing tools to parse, compile, and optimize should be avoided. The language should have a simple, uniform, and easily parsed grammar and lexical structure [25]. The language should be sufficiently expressive such that a simple straightforward translator will produce straightforward translations of acceptable compactness and efficiency. The language should be sufficiently expressive that most other optimizations can be made into the language itself. The language should be so simple, clear, regular, and free from side effects that a general machine-independent optimizer can simply translate an inefficient program into a more efficient one with guaranteed identical effects, and expressed in the same language (OO-VHDL) [13].

36. Implementability

OO-VHDL should be implementable at a reasonable cost and level of effort. The language shall be composed from features that are understood and can be implemented. The semantics of each feature should be sufficiently well specified and understandable that it will be possible to predict its interaction with other features. To the extent that is does not interfere with other requirements, the language shall facilitate the production of translators that are easy to implement and are efficient during translation. There shall be no language restrictions that are not enforceable by translators [25].

37. Parallelizability

In order to support large simulations, and high performance computing which exploits the concurrent nature of VHDL, OO-VHDL should avoid constructs which preclude or handicap the potential for parallel processing. Special consideration should be given to the extent of parallel processing supported within the behavioral description since simulation facilities will naturally support the implicit parallelism within structural descriptions. The parallel processing facility shall be designed to minimize simulation time and space. Processes shall have consistent semantics whether implemented on multicomputers, multiprocessors, or with interleaved execution on a single processor [25].

Appendix C: Prioritized Requirements

[Note - The following list shows a first pass prioritization of the requirements listed in the paper. The author gives priorities to start discussion about which are the most important, which are less important, and which should be dropped (and, of course, others could be added). The current list numbers currently do not reflect an ordering.

At the June 25, 1999 meeting of the IEEE DASC OO-VHDL Study Group, it was decided to develop a weighted prioritization of these requirements based on this update to the proposed requirements and a community-wide vote. The following list contains the author’s initial weights, which the reader may find useful, debatable, or irrelevant.]

Requirements list:

Higher priority:

1. Compatibility with VHDL and legacy models

2. Support hardware/software co-design and co-verification

3. Supports synthesis

4. Upwardly extensible

5. Ability to support high level design

6. Support partial definitions and incremental design (polymorphism, dynamic binding, type genericity)

7. Abstraction (of data, concurrency, communications, timing)

8. Relaxed timing and typing in controlled manner

9. Improved encapsulation

10. Improved information hiding

11. Improved productivity

12. Support reuse

13. Documentation

14. Readable

15. Concurrence

16. Efficient

17. Well defined

18. Ease of compilation/synthesis/optimization

19. Implementability

20. Simulatable

Lower priority:
21. Compatibility with systems engineering/software engineering representations

22. Support for VHDL-AMS

23. Implementation neutral representations (including HW/SW neutral)

24. Able to specify interfaces as well as objects/entities

25. Provide simulatable specification capabilities

26. Exceptions

27. Dynamic process creation and destruction

28. Accurate

29. Complete

30. Simplicity

31. Clean integration of capabilities

32. Extensions are unique and consistent

33. Portable

34. Translatable

35. Ease of use

36. Easily learned

37. Parallelizability

DRAFT Version 2.0

