Solutions to Examination  # 2

(範圍: Combinatorics)
(For each problem, please provide your computation details, not only your answer.)
1. Suggest particular solutions to  an + 4an(1 + 4an(2 = f(n), where n ( 2, when 
(a) f(n) = 5((2)n and (b) f(n) = 7n((2)n.  (10%) 
Sol.
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 = n2(k1n + k0)((2)n, where k0 and k1 are constants.
2. In how many ways can the integers 1, 2, …, 10 be arranged in a line so that no even integer is in its natural position? Your answer can be expressed as an arithmetic expression containing, for example, 7! and 
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Sol.
For 1 ( i ( 5, let ci be the condition that 2i is in position 2i.


N = 10!; N(ci) = 9!, for 1 ( i ( 5; 

N(cicj) = 8!, for 1 ( i < j ( 5; 

...;

N(c1c2c3c4c5) = 5!.
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3. Professor Ruth has five graders to correct programs in her five courses: Java, C++, SQL, Perl, and VHDL. Graders Jeanne and Charles both dislike SQL, Sandra wants to avoid C++ and VHDL. Paul dislikes Java and C++, and Todd refuses to work in SQL and Perl. In how many ways can Professor Ruth assign each grader to correct programs in one language, cover all five languages, and keep everyone content?  Please express your answer as a number, not an arithmetic expression.  (10%)

Sol:
	
	Java
	C++
	VHDL
	Perl
	SQL

	Grader-1 (Jeanne)
	
	
	
	
	

	Grader-2 (Charles)
	
	
	
	
	

	Grader-3 (Todd)
	
	
	
	
	

	Grader-4 (Paul)
	
	
	
	
	

	Grader-5 (Sandra)
	
	
	
	
	


C:
	
	Java
	C++
	VHDL

	Grader-4 (Paul)
	
	
	

	Grader-5 (Sandra)
	
	
	


C1:
	
	Perl
	SQL

	Grader-1 (Jeanne)
	
	

	Grader-2 (Charles)
	
	

	Grader-3 (Todd)
	
	


C2:
r(C1, x) = 1 + 4x + 3x2.

r(C2, x) = 1 + 4x + 2x2.

r(C, x) = (1 + 4x + 3x2)(1 + 4x + 2x2) = 1 + 8x + 21x2 + 20x3 + 6x4.

Let ci be the condition of assigning Grader-i with a course that he or she dislikes.
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4. Compute the number of ways to write an integer n ( 1 as an ordered sum of positive integers, where each summand is at least 2. For example, a5 = 3 because 5 can be written as 2 + 3 and 3 + 2.  (10%) 

Sol.
a1 = 0, a2 = 1, and a3 = 1. For n ( 4, let n = x1 + x2 + … + xt, where xi ( 2 for 1 ( i ( t
and 1 ( t ( 
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If x1 = 2, then x2 + … + xt is counted in an(2. 

If x1 ( 2, then x1 > 2 and (x1 ( 1) + x2 + … + xt is counted in an(1.

Hence, an = an(1 + an(2, where n ( 3. 
characteristic equation:  r2 ( r ( 1 = 0.

characteristic roots: 
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general solution: 
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With a1 = 0 and a2 = 1, we have 
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So, 
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5. In how many ways can 3000 identical envelopes be divided, in packages of 25, among four student groups so that each group gets at least 150, but not more than 1000, of the envelopes?  (10%) 
Sol.
Consider each package of 25 envelopes as one unit. Then the answer is the

coefficient of x120 in  (x6 + x7+ … + x39 + x40)4 = x24(1 + x + … + x34)4, which 

is the same as the coefficient of x96 in


[(1 ( x35) / (1 ( x)]4
=
(1 ( x35)4 ( (1 ( x)(4


=
(1 ( 4x35 + 6x70 ( … + x140) (
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Consequently, the answer is 
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6. Compute the number of ternary ({0, 1, 2}) strings of length n that contain no consecutive 1’s and no consecutive 2’s, where n ( 1.  (10%) 

Sol.
Let 
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, respectively) be the number of required ternary strings 

of length n, ending with 0 (1 and 2, respectively).


Then, 
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characteristic equation:  r2 ( 2r ( 1 = 0.


characteristic roots: 
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general solution: 
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With a1 = 3 and a2 = 7, we have 
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So, 
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7. How many 20-digit quaternary (0, 1, 2, 3) sequences are there such that no symbol occurs exactly three times?  (10%) 
Sol.
f(x) =
(1 + x + (x2 / 2!) + (x4 / 4!) + …)4


=
(ex ( (x3 / 3!))4 


=
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The coefficient of x20/(20!) in f(x) is 
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8. Prove the principle of inclusion and exclusion, i.e., the number of elements in a set S that satisfy none of conditions c1, c2, …, ct is equal to
N(
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(( 1)tN(c1c2…ct)
by considering the contribution of every element of S to either side of the equation.  (10%) 
Sol.
Refer to pages 3, 4 of lecture notes (“Combinatorics”).

9. Explain why the number of partitions of n into m summands is equal to the number of partitions of n into summands with m being the largest summand.  (10%) 
Sol.
Refer to pages 20, 21 of lecture notes (“Supplement of Combinatorics”).

10. Prove that the number of ordered rooted binary trees on n vertices is equal to 
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xn))).  (10%) 
Sol.
Refer to pages 488-490 of Grimaldi’s book.
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