Gestion de l'intelligence artificielle dans Age Of Kings

.

Bienvenu dans le temple du script IA

[image: image4.jpg]

Vous êtes perdus dans la documentation anglaise sur les scripts de développement de l'intelligence artificielle pour Age Of Empires II. Vous vous sentez comme un mouton errant dans le désert de la connaissance. Rassurez vous, vous avez trouvé une oasis qui va tarir votre soif de savoir.

APAD vous convie dans son temple du script IA. Il sera votre berger, votre guide. Le chemin est long et difficile mais grande sera votre satisfaction ...

	[image: image1.jpg]

	Entrer dans le temple

Bonne lecture.
Pour m'écrire, cliquer ici.

Copyright 2000 Apad Corporation.
All Rights Reserved
[image: image2.png]

Gestion de l'intelligence artificielle dans

Age Of Kings.

Guide de construction des stratégies

des joueurs gérés par l'ordinateur

	Page 04
	Introduction

	
	

	Page 05
	· Les règles

	Page 06
	· Le contexte

	Page 07
	· Les actions

	
	

	Page 08
	Les mots clés du langage

	Page 10

	Liste des informations de contexte

	Page 18
	Réaction en fonction du contexte

	Page 22
	Les nombres dits stratégiques

	Page 27
	Le chargement conditionnel et les symboles définis du système

	
	

	Page 29
	· Les symboles définis

	Page 30
	· Le chargement conditionnel et les constantes définies par l'utilisateur

	
	

	
	Les constantes définies du système

	
	Les paramètres

	
	

	Page 31
	· Les standards

	Page 37
	· Les jokers et leurs utilisations

	Page 39
	· Le degré de difficulté du jeu

	
	

	
	Les variables locales aux règles

	Page 40
	Les timers (minuteurs) et leur utilisation

	Page 42
	Les messages d'erreur

	Page 43
	Conseils pour un débogage efficace des scripts

	
	Exemples de scripts

	Page 47
	Glossaire

Introduction

Age Of Empire II (AOE2) utilise un nouveau système expert d'Intelligence Artificielle (IA) pour faire agir les Joueurs Gérés par l'Ordinateur (JGO). Ce système expert utilise une série de règles qui sont testées pour mettre en place les actions des JGO. Vous allez apprendre comment créer de nouvelles règles, comment évaluer le contexte du jeu pour déclencher ces règles et comment gérer l'IA selon vos instructions.

Les fichiers d'IA sont des fichiers texte avec une extension '.per' (par exemple 'Charlemagne.per'). Ces fichiers contiennent les commandes de script utilisées pour créer un nouveau comportement personnalisé de JGO. Utilisez un éditeur de texte pour créer vos scripts et copier ces fichiers dans le répertoire où vous avez installé AOE2, dans le dossier AI.

Un fichier vide avec l'extension '.ai' (par exemple 'Charlemagne.ai') doit être créé pour obtenir une entrée dans la liste des JGO et dans l'éditeur de scénarios. Le jeu essayera de trouver le fichier correspondant avec l'extension '.per' lorsque vous sélectionnerez votre nouveau joueur. Ainsi, dans le répertoire AI du jeu, vous devez avoir 2 fichiers:

C:\Program Files\Microsoft Games\Age of Empires II\AI\Charlemagne.ai

(Ce fichier vide crée une entrée dans la liste du jeu)

C:\Program Files\Microsoft Games\Age of Empires II\AI\Charlemagne.per

(Ce fichier contient votre script personnalisé d'IA)

Les règles

Les règles sont la base du système expert. Il existe un ensemble d'informations que nous pouvons connaître sur le monde du jeu, les autres joueurs, etc. Ces renseignements sont appelés le contexte. Nous pouvons évaluer le contexte à l'aide de règles jusqu'à ce qu'un ensemble de conditions soit vérifié et nécessite une action (ou plutôt une réaction) du JGO. Ces actions peuvent être, par exemple, entraîner une unité, rechercher une technologie, ou bien envoyer un message.

Définition d'une règle :

* Les règles sont définies dans un script avec l'instruction defrule. La syntaxe pour définir une règle est la suivante :

(defrule

(conditions à vérifier)

=>

(déclencher les actions)

)

* Si les conditions sont vérifiées (True), les instructions (actions) de cette règle sont exécutées. Si les conditions ne sont pas vérifiées (False), les instructions sont ignorées.

Exemple :

(defrule

(cheats-enabled)

=>

(chat-to-all "Le mode tricheur est activé !")

)

* Vous noterez que les parenthèses autour de la règle sont indispensables, cependant les caractères de formatage blancs (espaces, tabulations, ...) ne sont pas importants.

* Les règles continuent d'être évaluées tant qu'elles n'ont pas été désactivées. La désactivation d'une règle est exécutée par la commande disable-self.

Exemple :

(defrule

(True)

=>

(disable-self)

)

* Le test de l'ensemble des règles d'un bout à l'autre de la liste est appelé un passage de règles. Ce système est très efficace, les règles peuvent être contrôlées plusieurs fois par seconde.

* Les lignes de commentaire : Vous verrez souvent des commentaires dans les fichiers de script IA. Ces commentaires commencent par un point virgule (;). Tout texte suivant un point virgule sur une ligne est un commentaire et est ignoré dans le script.

Exemple :

;Ceci est une ligne de commentaire

(defrule

(food-amount greater-than 75)

=>

(train villager) ; On peut écrire des commentaires en fin de ligne aussi !

)

Une fois les règles définies, vous pouvez combiner l'ensemble des informations de contexte et la totalité des actions disponibles pour faire n'importe quelles actions possibles dans le jeu.

Le contexte

Le contexte est l'ensemble des informations testées dans les règles. Les informations sur le joueur telles que la quantité d'or possédée, les informations sur les autres joueurs telles que le score ou bien les informations sur le jeu telles que la durée de la partie ou les conditions de victoire sont quelques exemples. Ces informations véhiculent des valeurs et ce sont ces valeurs qui peuvent être testées dans une règle. Il existe quatre types d'information :

· Les informations véhiculant la valeur VRAI ou la valeur FAUX.

· Les informations véhiculant une valeur numérique.

· Les informations véhiculant une valeur comprise dans un ensemble de valeurs définies par le système. (ces ensembles sont décrits dans la section paramètre).

· Les informations véhiculant une valeur numérique et nécessitant l'utilisation d'un paramètre pour être clairement définie.

Utilisation du contexte :

Les informations sont utilisées pour activer les règles. Un test d'un contexte est utilisé pour savoir si une condition est vérifiée. La réponse à un test de contexte ne peut être que VRAI (True) ou FAUX (False).L'exemple suivant montre comment provoquer l'entraînement d'un villageois lorsqu'on possède au moins 50 unités de nourriture :

(defrule

(food-amount greater-than 50)

=>

(train villager)

)

Tester le contexte :

· Pour les informations VRAI ou FAUX, la condition d'une règle est vérifiée en contrôlant uniquement la valeur de l'information. Exemple:

(defrule

(regicide-game)

=>

(chat-to-all "A mort le roi !")

)

· Dans le cas des informations numériques, vous verrez <rel-op> associé à ces informations, c'est un opérateur relatif qui vous permet de tester la relation d'une information avec une valeur. Par exemple, si vous souhaitez activer une règle lorsqu'une certaine quantité de bois est collectée, vous pouvez écrire :

(defrule

(wood-amount greater-than 1000)

=>

(chat-to-all "J'ai plus de 1000 unités de bois !")

)

Dans notre exemple, wood-amount (quantité de bois) est une information numérique de contexte, greater-than (plus grand que) est un opérateur relatif et 1000 est la valeur de comparaison. La règle peut être traduite en algorithmique par : Si la quantité de bois en ma possession est strictement supérieure à 1000 unités alors envoyer à tout le monde le message "J'ai plus de 1000 unités de bois !".

Les opérateurs relatifs existants sont les suivants :

less-than (strictement inférieur à, raccourci : <)

less-or-equal (inférieur ou égal à, raccourci : <=)

greater-than (strictement supérieur à, raccourci : >)

greater-or-equal (supérieur ou égal à, raccourci : >=, attention ne pas confondre avec => désignant une liste d'actions dans une règle)

equal (égal à, raccourci : ==, attention ce sont deux symboles = contigus)

not-equal (différent de, raccourci : !=)

· Pour les informations véhiculant une valeur prédéfinie, la condition d'une règle est vérifiée en contrôlant la valeur de l'information par rapport à un paramètre. Exemple :

(defrule

(civ-selected viking)

=>

(chat-to-all "Vous allez voir ce que nous autres les vikings sommes capables de vous infliger !!!")

)

Dans cet exemple, viking est une valeur prédéfinie du paramètre <civ> (civilisation).

· Les informations numériques complexes nécessite l'utilisation des opérateurs relatifs et de certains paramètres pour vérifier une condition. Si par exemple vous souhaitez évaluer la quantité d'or que vous avez mis en réserve :

(defrule

(escrow-amount gold > 10000)

=>

(chat-to-all "Je suis extrêmement riche.")

)

Dans cet exemple, escrow amount (quantité mise en réserve) doit connaître le type de ressources que l'on souhaite tester pour renvoyer une valeur, le type de ressource <resource-type> est ici l'or (gold).

Les actions

Les actions sont les choses que vous souhaitez faire faire à l'IA lorsqu'il exécute vos règles. Les actions peuvent provoquer par le joueur IA la construction d'un bâtiment, l'entraînement d'une unité ou l'envoi d'un message par exemple. Les règles permettent au JGO de faire n'importe quelle action possible pour un joueur humain.

Les mots clés du langage

defrule :

Cette instruction crée une nouvelle règle.

Syntaxe : (defrule (condition) => (action))

Exemple : Après 30 secondes de jeu, déclarer forfait.

(defrule

(game-time greater-than 30)

=>

(resign)

)

defconst :

Cette commande permet de créer une constante définie par l'utilisateur.

Syntaxe : (defconst <nom-de-la-constante> <valeur>)

<nom-de-la-constante> est un nom choisi par l'utilisateur, l'utilisation du formatage de nom du système (mots-séparés-par-des-traits par exemple) est recommandée mais pas obligatoire.

<valeur> est un nombre entier compris entre -32768 et 32727 (correspondant au type short pour les programmeurs en C++).

Exemple : définition d'un nombre maximal de péons et utilisation de la constante

(defconst nombre-max-villageois 25)

(defrule

(civilian-population less-than nombre-max-villageois)

(can-train villager)

=>

(train villager)

)

Remarque :

Les constantes sont très utiles pour nommer les objectifs (<goal-id>), les valeurs des objectifs, les timers (<timer -id>), les railleries (<taunt-id>), etc. Sans les constantes, les exemples cités ci-dessus ne seraient que des nombres sans nom.

Pour plus d'informations sur l'utilisation de defconst, se reporter à la rubrique "Chargement conditionnel et les constantes définies par l'utilisateur"

Astuce :

Si vous regroupez toutes vos définitions de constantes dans un fichier, il deviendra plus aisé de personnaliser le comportement de votre IA en changeant le nombre représenté par la constante sans avoir à changer cette valeur partout dans le fichier. Dans l'exemple précédent, si vous faîtes référence à nombre-max-villageois à plusieurs endroits dans votre script, ce sera plus facile de changer la valeur 25 de nombre-max-villageois en valeur 15 à un seul endroit.

load :

La commande load vous permet de fournir le nom d'un fichier d'un autre script à charger à l'intérieur de votre propre script. Il devient plus facile d'organiser et de réutiliser des parties de vos scripts à nouveau.

Le langage de script supporte le chargement d'un fichier script à partir d'un autre fichier script. Les fichiers chargés ont un aspect identique au fichier script original, ainsi n'importe quel fichier script peut être chargé par un autre fichier script.

Syntaxe :

(load "filename")

Cette commande peut être insérée n'importe où entre les règles.

Exemple :

(defrule)

(load "Dark Age Economy")

(defrule)

Remarque :

Vous remarquerez que le nom de fichier ne possède aucun chemin ni extension. L'interpréteur de script ajoute automatiquement un chemin et une extension. Un f ichier script chargé doit se trouver dans le même répertoire que le fichier chargeant.

Il est important de mentionner le fait que la commande de chargement s'exécute immédiatement. Cela signifie que lorsqu'une commande load est rencontrée, le parsage du fichier courant est interrompu jusqu'à ce que la commande de chargement soit terminée. A ce point, le parsage reprend, commençant par la règle suivant immédiatement la commande load.

Les commandes de chargement peuvent s'emboîter (un script charge un autre script) jusqu'à 10 niveaux de profondeur.

On peut rendre modulaire le comportement d'un JGO en chargeant plusieurs fichiers scripts depuis le fichier script maître. Cette approche n'a d'intérêt que lorsque les fichiers scripts chargés n'ont pas de domaines d'expertise se recouvrant.

load-random :

Une variante de la commande de chargement qui permet un chargement aléatoire de fichier. Cette commande offre la possibilité de rendre la stratégie d'un JGO aléatoire à un niveau supérieur à celui des règles.

Syntaxe :

(load-random <probabilité1> "nom-de-fichier1" ... <probabilitéN> "nom-de-fichierN" "nom-de-fichier-par-défaut")

Comme tous les fichiers partage le même tirage au sort, une commande load-random ne peut aboutir au chargement que d'un seul fichier. Ainsi, la somme des probabilités ne doit jamais être supérieure à 100.

Exemple :

(load-random

20 "fichier1"

10 "fichier2"

40 "fichier3"

"fichier4"

)

Dans cet exemple, le fichier1 a 20% de chance d'être chargé, le fichier2 a 10% de chance d'être chargé, le fichier3 a 40% de chance d'être chargé et le fichier4 est chargé lorsqu'aucun des trois premiers n'a été chargé. Le fichier4 est appelé fichier par défaut.

Cas spécial N° 1 :

(load-random

20 "fichier1"

10 "fichier2"

40 "fichier3"

)

Il n'y a pas de fichier par défaut. Cette syntaxe est correcte et signifie qu'il y a 30% de chance qu'aucun fichier ne soit chargé.

Cas spécial N° 2 :

(load-random "fichier")

Le fichier par défaut sera toujours chargé. Cette syntaxe est correcte mais elle est peut recommandée.

Liste des informations de contexte

True

Cette information véhicule toujours l'information VRAI.

Exemple : (defrule (True) => (chat-to-all "Je suis le meilleur.")). Quoiqu'il arrive la condition de la règle est toujours vérifiée donc le message sera toujours affiché.

False

Cette information véhicule toujours l'information FAUX.

attack-soldier-count <rel-op> <value>

Cette information donne le nombre de soldats d'attaque du JGO. Un soldat d'attaque est une unité militaire terrestre actuellement assignée aux groupes d'attaque.

attack-warboat-count <rel-op> <value>

Cette information donne le nombre de bateaux de combat du JGO. Un bateau de combat est un bateau capable d'attaquer actuellement assignée aux groupes d'attaque.

building-available <building>

Cette information indique si le bâtiment passé en paramètre (<building>) est disponible pour la civilisation du JGO et si les prérequis technologiques permettent sa construction. Cette information n'indique pas si le joueur possède assez de ressources pour construire le bâtiment. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

building-count <rel-op> <value>

Cette information donne le nombre de bâtiments existants du JGO. Les bâtiments en cours de construction ne sont pas comptabilisés.

building-count-total <rel-op> <value>

Cette information donne le nombre total de bâtiments du JGO. Le total inclut les bâtiments construits et ceux en cours de construction.

building-type-count <building> <rel-op> <value>

Cette information donne le nombre de bâtiments du JGO correspondant au bâtiment passé en paramètre. Les bâtiments en cours de construction ne sont pas comptabilisés. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

building-type-count-total <building> <rel-op> <value>

Cette information donne le nombre total de bâtiments du JGO correspondant au bâtiment passé en paramètre. Le total inclut les bâtiments construits et ceux en cours de construction. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

can-afford-building <building>

Cette information indique si le JGO possède assez de ressources pour construire le bâtiment passé en paramètre. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles pour la construction du bâtiment. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

can-afford-complete-wall <perimeter> <wall>

Cette information indique si le JGO possède assez de ressources pour terminer le type de mur passé en paramètre en fonction du périmètre déterminé. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles pour la construction du mur. Cette information contrôle notamment que le type de mur est disponible pour la civilisation du JGO et que les connaissances techniques prérequises pour la construction sont connues.

can-afford-research <research-item>

Cette information indique si le JGO possède assez de ressources pour mener à bien la recherche de la technologie passée en paramètre. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles.

can-afford-unit <unit>

Cette information indique si le JGO possède assez de ressources pour entraîner une unité. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

can-build <building>

Cette information indique si le JGO peut construire le bâtiment passé en paramètre. Cette information contrôle notamment que le bâtiment est disponible dans la civilisation du JGO, que les compétences technologiques nécessaires sont acquises et que les ressources (sans compter les ressources mises en réserve) sont suffisantes. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

can-build-gate <perimeter>

Cette information indique si le JGO peut construire un portail dans le périmètre donné en paramètre. Cette information contrôle si la porte est disponible dans la civilisation du JGO, si les connaissances technologiques nécessaires à la construction de la porte sont acquises, si les ressources disponibles (sans compter les ressources mises en réserve) sont suffisantes et enfin si il existe un emplacement pour construire le portail.

can-build-gate-with-escrow <perimeter>

Cette information indique si le JGO peut construire un portail dans le périmètre donné en paramètre. Cette information contrôle si la porte est disponible dans la civilisation du JGO, si les connaissances technologiques nécessaires à la construction de la porte sont acquises, si les ressources disponibles (en comptant les ressources mises en réserve) sont suffisantes et enfin si il existe un emplacement pour construire le portail.

can-build-wall <perimeter> <wall>

Cette information indique si le JGO peut construire le type de mur passé en paramètre en fonction du périmètre déterminé. Cette information contrôle notamment que le type de mur est disponible pour la civilisation du JGO que les connaissances techniques prérequises pour la construction sont connues, que les ressources disponibles (sans compter les ressources mises en réserve) sont suffisantes et enfin qu'il existe un emplacement pour construire le mur. Il est possible d'utiliser les paramètres jokers désignant une lignée de mur à la place du paramètre <wall>.

can-build-wall-with-escrow <perimeter> <wall>

Cette information indique si le JGO peut construire le type de mur passé en paramètre en fonction du périmètre déterminé. Cette information contrôle notamment que le type de mur est disponible pour la civilisation du JGO que les connaissances techniques prérequises pour la construction sont con nues, que les ressources disponibles (en comptant les ressources mises en réserve) sont suffisantes et enfin qu'il existe un emplacement pour construire le mur. Il est possible d'utiliser les paramètres jokers désignant une lignée de mur à la place du paramètre <wall>.

can-build-with-escrow <building>

Cette information indique si le JGO peut construire le bâtiment passé en paramètre. Cette information contrôle notamment que le bâtiment est disponible dans la civilisation du JGO, que les compétences technologiques nécessaires sont acquises et que les ressources (en comptant les ressources mises en réserve) sont suffisantes. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

can-buy-commodity <commodity>

Cette information indique si le JGO peut acheter un lot (100 unités) de la marchandise passée en paramètre. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles.

can-research <research-item>

Cette information indique si la recherche de la technologie passée en paramètre peut commencer. L'information vérifie que la technologie est disponible dans la civilisation du JGO, que les connaissances technologiques nécessaires à la recherche sont acquises, que les ressources (sans compter les ressources mises en réserve) sont suffisantes et enfin qu'il existe un bâtiment inoccupé et prêt à lancer la recherche.

can-research-with-escrow <research-item>

Cette information indique si la recherche de la technologie passée en paramètre peut commencer. L'information vérifie que la technologie est disponible dans la civilisation du JGO, que les connaissances technologiques nécessaires à la recherche sont acquises, que les ressources (en comptant les ressources mises en réserve) sont suffisantes et enfin qu'il existe un bâtiment inoccupé et prêt à lancer la recherche.

can-sell-commodity <commodity>

Cette information indique si le JGO peut vendre un lot (100 unités) de la marchandise passée en paramètre. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles.

can-spy

Cette information indique si la commande d'espionnage peut être exécutée. Les ressources mises en réserve ne sont pas prises en compte dans la comptabilisation des ressources disponibles.

can-spy-with-escrow

Cette information indique si la commande d'espionnage peut être exécutée. Les ressources mises en réserve sont prises en compte dans la comptabilisation des ressources disponibles.

can-train <unit>

Cette information indique si l'entraînement de l'unité passée en paramètre peut commencer. L'information contrôle que l'unité est disponible dans la civilisation du JGO, que les connaissances technologiques nécessaires à l'entraînement sont acquises, que les ressources (sans compter les ressources mises en réserve) sont suffisantes, qu'il existe assez d'habitation pour recevoir une nouvelle unité et enfin qu'il existe un bâtiment inoccupé et prêt à commencer l'entraînement. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

can-train-with-escrow <unit>

Cette information indique si l'entraînement de l'unité passée en paramètre peut commencer. L'information contrôle que l'unité est disponible dans la civilisation du JGO, que les connaissances technologiques nécessaires à l'entraînement sont acquises, que les ressources (en comptant les ressources mises en réserve) sont suffisantes, qu'il existe assez d'habitation pour recevoir une nouvelle unité et enfin qu'il existe un bâtiment inoccupé et prêt à commencer l'entraînement. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

cc-players-building-count <player-number> <rel-op> <value>

Cette information est une version pipée de players-building-count. Elle ne peut être utilisée que dans les scénarios. Elle indique le nombre total de bâtiments du joueur passé en paramètre. Elle prend en compte les bâtiments existants et ceux en cours de construction sans se soucier si les bâtiments ont été découverts par le JGO - Le brouillard est ignoré. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>, de même les paramètres jokers de lignée de bâtiments sont acceptés à la place du paramètre <building>.

cc-players-building-type-count <player-number> <building> <rel-op> <value>

Cette information est une version pipée de players-building-type-count. Elle ne peut être utilisée que dans les scénarios. Elle indique le nombre total de bâtiment spécifié en paramètre du joueur passé en paramètre. Elle prend en compte les bâtiments existants et ceux en cours de construction sans se soucier si les bâtiments ont été découverts par le JGO - Le brouillard est ignoré. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>, de même les paramètres jokers de lignée de bâtiments sont acceptés à la place du paramètre <building>.

cc-players-unit-count <player-number> <rel-op> <value>

Cette information est une version pipée de players-unit-count. Elle ne peut être utilisée que dans les scénarios. Elle indique le nombre total d'unités du joueur passé en paramètre. Elle ne prend en compte que les unités entraînées et le brouillard est ignoré. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

cc-players-unit-type-count <player-number> <unit> <rel-op> <value>

Cette information est une version pipée de players-unit-type-count. Elle ne peut être utilisée que dans les scénarios. Elle indique le nombre total d'unités spécifiées en paramètre du joueur passé en paramètre. Elle ne prend en compte que les unités entraînées et le brouillard est ignoré. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

cheats-enabled

Cette information indique si le mode tricheur est activé.

civ-selected <civ>

Cette information indique si la civilisation passée en paramètre est celle du JGO.

civilian-population <rel-op> <value>

Cette information donne la population civile du JGO. La population civile comprend les villageois, les véhicules de commerce, les bateaux de pêche, etc.

commodity-buying-price <commodity> <rel-op> <value>

Cette information donne le prix d'achat de la marchandise passée en paramètre.

commodity-selling-price <commodity> ; <rel-op> <value>

Cette information donne le prix de vente de la marchandise passée en paramètre.

current-age <rel-op> <age>

Cette information donne l'époque dans laquelle se trouve le JGO.

current-age-time <rel-op> <value>

Cette information indique le temps passé dans l'époque courante par le JGO.

current-score <rel-op> <value>

Cette information donne le score du JGO.

death-match-game

Cette information indique si le mode combat à mort est activé.

defend-soldier-count <rel-op> <value>

Cette information donne le nombre de soldats défensifs du JGO. Un soldat défensif est une unité militaire terrestre n'appartenant pas aux groupes d'attaque.

defend-warboat-count <rel-op> <value>

Cette information donne le nombre de bateaux défensifs du JGO. Un bateaux défensif est une unité militaire maritime capable d'attaquer et n'appartenant pas aux groupes d'attaque.

difficulty <rel-op> <difficulty>

Cette information indique le niveau de difficulté de la partie

doctrine <value>

Cette information indique la doctrine courante appliquée au JGO.

dropsite-min-distance <resource-type> <rel-op> <value>

Cette information indique la distance minimum à parcourir pour aller du site d'exploitation de la ressource passée en paramètre jusqu'au site de production de cette ressource. Une longue distance indique qu'il est nécessaire de construire un nouveau site d'exploitation. Il n'est pas recommandé d'utiliser cette information pour construire vos premiers sites d'exploitation nécessaires à la progression à travers les époques. Si, au début d'une partie, les ressources sont assez proches du Forum, la construction de vos premiers sites d'exploitation risque d'être différée et la civilisation du JGO progressera à travers les époques moins rapidement.

enemy-buildings-in-town

Cette information indique si il existe au moins un bâtiment ennemi dans l'enceinte de votre ville.

enemy-captured-relics

Cette information indique si les ennemis ont capturé toutes les reliques. Lorsque cela arrive, la tactique de l'IA commence automatiquement à prendre pour cible les monastères et les moines. Utilisez cette information pour intensifier vos attaques et combinez la avec l'action attack-now pour obliger le JGO à attaquer.

escrow-amount <resource-type> <rel-op> <value>

Cette information indique la quantité mise en réserve de la ressource passée en paramètre.

event-detected <event-type> <event-id>

Cette information indique si un événement donné a été détecté. Cette information reste vraie tant que l'événement n'a pas été désactivé explicitement par l'action acknowledge-event.

food-amount <rel-op> <value>

Cette information indique la quantité de nourriture du JG O.

game-time <rel-op> <value>

Cette information indique le temps de jeu. Ce temps est donné en seconde. Cette information peut être utilisée pour créer des règles planifiées dans le temps. Par exemple, le JGO peut devenir plus agressif après 15 minutes de jeu.

goal <goal-id> <value>

Cette information indique quel est l'objectif passé en paramètre.

gold-amount <rel-op> <value>

Cette information indique la quantité d'or du JGO.

housing-headroom <rel-op> <value>

Cette information indique le nombre d'habitations libres du JGO. Le nombre d'habitations libres est la différence entre la capacité de logement et le nombre d'unités entraînées. Par exemple, le JGO possède un forum (capacité 5), une maison (capacité 5) et 6 villageois. Dans ce cas, il y a 4 habitations libres.

idle-farm-count <rel-op> <value>

Cette information indique le nombre de fermes inoccupées (nombre de fermes sans fermiers). Il vaut mieux vérifier que toutes les fermes sont occupées avant d'en construire une nouvelle.

map-size <map-size>

Cette information indique la taille de la carte.

map-type <map-type>

Cette information indique le type de carte.

military-population <rel-op> <value>

Cette information donne le nombre d'unités militaires du JGO.

player-computer <player-number>

Cette information indique si le joueur précisé en paramètre est un JGO.

player-human <player-number>

Cette information indique si le joueur précisé en paramètre est un joueur humain.

player-in-game <player-number>

Cette information indique si le joueur spécifié est un joueur valide et toujours en jeu. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

player-number <player-number>

Cette information indique si le joueur passé en paramètre est le JGO pour lequel vous définissez l'IA.

player-resigned <player-number>

Cette information vérifie si le joueur passé en paramètre a perdu la partie par forfait. Vous remarquerez cependant qu'un joueur peut perdre sans abandonner, donc vous ne pouvez pas utiliser cette information pour vérifier si un joueur a perdu. Pour savoir si un joueur donné a perdu, vous devez utiliser l'instruction (not (player-in-game <player-number>)). Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

player-valid <player-number>

Cette information indique si le joueur passé en paramètre est un joueur valide. Dans une partie avec plus de 2 joueurs, les joueurs qui perdent avant la fin de la partie sont considérés comme des joueurs valides. En effet, bien qu'un joueur ne fasse plus partie du jeu, ses unités et bâtiments peuvent encore être dans la partie. Pour savoir si un joueur est toujours dans la partie, utilisez l'information player-in-game. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-building-count <player-number> <rel-op> <value>

Cette information indique le nombre total de bâtiments du joueur passé en paramètre. Elle prend en compte les bâtiments existants et ceux en cours de construction. Seuls les bâtiments qui ont été découverts par le JGO sont comptabilisés, les bâtiments dans le brouillard ne sont pas comptabilisés. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>, de même les paramètres jokers de lignée de bâtiments sont acceptés à la place du paramètre <building>.

players-building-type-count <player-number> <building> <rel-op> <value>

Cette information indique le nombre total de bâtiment spécifié en paramètre du joueur passé en paramètre. Elle prend en compte les bâtiments existants et ceux en cours de construction. Seuls les bâtiments qui ont été découverts par le JGO sont comptabilisés, les bâtiments dans le brouillard ne sont pas comptabilisés. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>, de même les paramètres jokers de lignée de bâtiments sont acceptés à la place du paramètre <building>.

players-civ <player-number> <civ>

Cette information indique si le joueur spécifié par le paramètre appartient à la civilisation passée en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-civilian-population <player-number> <rel-op> <value>

Cette information donne la population civile du joueur passé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-current-age <player-number> <rel-op> <age>

Cette information donne l'époque dans laquelle se trouve le joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-current-age-time <player-number> <rel-op> <value>

Cette information indique le temps passé dans l'époque courante par le joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-military-population <player-number> <rel-op> <value>

Cette information donne le nombre d'unités militaires du joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-population <player-number> <rel-op> <value>

Cette information donne la population totale du joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-score <player-number> <rel-op> <score>

Cette information donne le score courant du joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-stance <player-number> <diplomatic-stance>

Cette information indique la position diplomatique du joueur précisé en paramètre vis-à-vis du JGO. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-tribute <player-number> <resource-type> <rel-op> <value>

Cette information indique le tribut versé par le joueur passé en paramètre depuis le début de la partie pour la ressource considérée. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-tribute-memory <player-number> <resource-type> <rel-op> <value>

Cette information indique le tribut versé par joueur passé en paramètre depuis la dernière mise à zéro du compteur de tribut pour la ressource considérée. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-unit-count <player-number> <rel-op> <value>

Cette information indique le nombre d'unités du joueur passé en paramètre. Seules les unités découvertes par le JGO sont comptabilisées. Seules les unités entraînées sont comptabilisées pour les alliés et le JGO lui même. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

players-unit-type-count <player-number> <unit> <rel-op> <value>

Cette information indique le nombre d'unités du type spécifié du joueur passé en paramètre. Seules les unités découvertes par le JGO sont comptabilisées. Seules les unités entraînées sont comptabilisées pour les alliés et le JGO lui même. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

population <rel-op> <value>

Cette information donne la population totale du JGO.

population-cap <rel-op> <value>

Cette information donne le nombre maximal de population autorisé pour le JGO.

population-headroom <rel-op> <value>

Cette information donne la capacité de logements pouvant être créés par le JGO. Elle correspond à la différence entre le nombre maximal de population autorisée et le nombre d'habitations créées. Par exemple, si le maximum de population est 75 et que le JGO possède un forum (capacité 5) et une maison (capacité 5) alors la capacité de logement que le JGO est autorisé à créer est 65.

random-number <rel-op> <value>

Cette information donne un nombre tiré aléatoirement.

regicide-game

Cette information indique si le mode régicide est activé.

research-available <research-item>

Cette information indique si une recherche technologique est disponible pour le JGO et si les connaissances prérequises sont acquises par le JGO. Cette information n'indique pas si les ressources sont suffisantes pour commencer la recherche.

research-completed <research-item>

Cette information indique si la recherche d'une technologie est terminée.

resource-found <resource-type>

Cette information indique si le JGO a trouvé la ressource passée en paramètre. Cette information devrait être au début du jeu. Une fois que l'information est vérifiée pour une ressource, cette information reste toujours vraie. Dans ce contexte, le bois se réfère à une forêt (et non pas des arbres isolés).

shared-goal <shared-goal-id> <value>

Cette information désigne un objectif partagé entre les JGO.

sheep-and-forage-too-far

Cette information indique si le JGO possède un site agricole et/ou un mouton à 8 carreaux de distance d'un site d'exploitation (moulin ou forum).

soldier-count <rel-op> <value>

Cette information donne le nombre d'unités militaires terrestres du JGO.

stance-toward <player-number> <diplomatic-stance>

Cette information indique la position diplomatique du JGO envers le joueur passé en paramètre. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

starting-age <rel-op> <age>

Cette information indique l'époque au début d'une partie. En plus des valeurs courantes du paramètre <age>, la valeur post-imperial-age peut être utilisée.

starting-resources <rel-op> <starting-resources>

Cette information indique les quantités de ressources allouées au JGO au début d'une partie.

stone-amount <rel-op> <value>

Cette information donne la quantité de pierre du JGO.

strategic-number <strategic-number> <rel-op> <value>

Cette information indique la valeur du nombre stratégique passé en paramètre.

taunt-detected <player-number> <taunt-id>

Cette information indique qu'un message est détecté tant que le message n'a pas été explicitement reconnu. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>.

L'exemple suivant détecte une demande de nourriture de la part d'un joueur ennemi, ordinateur ou humain.

(defrule

(taunt-detected any-enemy 3)

=>

(acknowledge-taunt this-any-enemy 3)

(chat-to-player this-any-enemy "Tu n'auras pas de nourriture !")

)

timer-triggered <timer-id>

Cette information indique si le timer passé en paramètre a été déclenché. La réponse est VRAI tant que le timer n'a pas été explicitement désactivé. Si le timer est inactif, la réponse est toujours FAUX.

town-under-attack

Cette information indique si la ville du JGO subit une attaque.

unit-available <unit>

Cette information indique si une unité est disponible dans la civilisation du JGO et si les connaissances technologiques nécessaires à l'entraînement de cette unité sont acquises par le JGO. Cette information ne vérifie pas si l'entraînement de l'unité peut commencer, ceci dépend des ressources disponibles, du nombre de logements inoccupés et si le bâtiment nécessaire à l'entraînement n'est pas en cours d'utilisation (pour une recherche ou l'entraînement d'une autre unité). Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

unit-count <rel-op> <value>

Cette information indique le nombre d'unités du JGO. Elle ne prend en compte que les unités entraînées.

unit-count-total <rel-op> <value>

Cette information donne le nombre total d'unités du JGO. Elle prend en compte les unités entraînées et celles en cours de formation.

unit-type-count <unit> <rel-op> <value>

Cette information donne le nombre d'unités du JGO pour le type d'unité passé en paramètre. Elle ne prend en compte que les unités entraînées. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

unit-type-count-total <unit> <rel-op> <value>

Cette information donne le nombre total d'unités du JGO pour le type d'unité passé en paramètre. Elle prend en compte les unités entraînées et celles en cours de formation. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

victory-condition <victory-condition>

Cette information indique les conditions nécessaires pour remporter la victoire.

wall-completed-percentage <perimeter> <rel-op> <value>

Cette information donne la proportion de mur achevé pour un périmètre donné. Les arbres et autres barrières naturelles destructible sont inclus et compté comme partie achevée du mur.

wall-invisible-percentage <perimeter> <rel- op> <value>

Cette information indique quelle proportion de construction de mur potentiel est couvert par le brouillard.

Exemple:

(defrule

(wall-completed-percentage 1 < 100) ; Le mur n'est pas totalement fini.

(wall-invisible-percentage 1 == 0) ; Et on peut voir le mur dans sa totalité.

=>

(chat-local "Il y a un trou dans le mur.")

)

Notez que si le pourcentage de mur invisible n'est pas égal à zéro, on ne peut pas savoir si il y a un trou ou pas. Ceci parce que le(s) carreau(x) caché(s) peu(ven)t contenir un arbre.

warboat-count <rel-op> <value>

Cette information donne le nombre de bateaux de combat du JGO. Un bateau de combat est un bateau capable d'attaquer.

wood-amount <rel-op> <value>

Cette information indique la quantité de bois du JGO.

Informations constantes

true

false

Informations de détection d'événement

event-detected

taunt-detected

timer-triggered

Informations sur le jeu

cheats-enabled

death-match-game

difficulty

game-time

map-size

map-type

player-computer

player-human

player-in-game

player-resigned

player-valid

population-cap

regicide-game

starting-age

starting-resources

victory-condition

Informations sur le commerce de marchandises

can-buy-commodity

can-sell-commodity

commodity-buying-price

commodity-selling-price

Information de détection de tribut

players-tribute

players-tribute-memory

Information sur la mise en réserve

can-build-gate-with-escrow

can-build-wall-with-escrow

can-build-with-escrow

can-research-with-escrow

can-spy-with-escrow

can-train-with-escrow

escrow-amount

Informations de comptage de population du JGO

attack-soldier-count

attack-warboat-count

building-count

building-count-total

building-type-count

building-type-count-total

civilian-population

defend-soldier-count

defend-warboat-count

housing-headroom

idle-farm-count

military-population

population

population-headroom

soldier-count

unit-count

unit-count-total

unit-type-count

unit-type-count-total

warboat-count

Informations sur les ressources du JGO

dropsite-min-distance

food-amount

gold-amount

resource-found

sheep-and-forage-too-far

stone-amount

wood-amount

Information en mode régicide

can-spy

Informations sur les moyens du JGO

building-available

can-afford-building

can-afford-complete-wall

can-afford-research

can-afford-unit

can-build

can-build-gate

can-build-wall

can-research

can-train

research-available

research-completed

unit-available

wall-completed-percentage

wall-invisible-percentage

Informations diverses sur le JGO

civ-selected

current-age

current-age-time

current-score

doctrine

enemy-buildings-in-town

enemy-captured-relics

goal

player-number

random-number

shared-goal

stance-toward

strategic-number

town-under-attack

Informations sur les adversaires

players-building-count

players-building-type-count

players-civ

players-civilian-population

players-current-age

players-current-age-time

players-military-population

players-population

players-score

players-stance

players-unit-count

players-unit-type-count

Informations pipées

cc-players-building-count

cc-players-building-type-count

cc-players-unit-count

cc-players-unit-type-count

Réaction en fonction du contexte : liste des actions possibles

do-nothing

Cette action ne fait rien du tout. Elle est principalement utilisée comme un moyen de tester des objectifs. Vous noterez au passage que chaque règle nécessite au moins une action.

acknowledge-event <event-type> <event-id>

Cette action confirme la réception d'un événement et réinitialise son flag associé.

acknowledge-taunt <player-number> <taunt-id>

Cette action confirme la réception d'un message et réinitialise son flag associé.

attack-now

Cette action force le JGO à passer à l'attaque avec ses unités disponibles.

build <building>

Cette action provoque la construction du bâtiment passé en paramètre. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

build-forward <building>

Cette action provoque la construction du bâtiment passé en paramètre près de l'ennemi. Il est possible d'utiliser les paramètres jokers désignant une lignée de bâtiment à la place du paramètre <building>.

build-gate <perimeter>

Cette action déclenche la construction d'une porte dans le mur désigné par le périmètre.

build-wall <perimeter> <wall>

Cette action provoque la construction d'un mur du type passé en paramètre sur le périmètre défini en paramètre. Il est possible d'utiliser les paramètres jokers désignant une lignée de mur à la place du paramètre <wall>.

buy-commodity <commodity>

Cette action lance l'ordre d'achat de la marchandise passée en paramètre.

cc-add-resource <resource-type> <amount>

Cette action est pipée, elle permet d'ajouter des ressources au JGO. Elle permet notamment d'éviter un comportement plutôt bizarre des villageois lorsque la partie dure depuis quelque temps, comme par exemple lorsque les péons traversent la carte dans tous les sens pour trouver les dernières onces d'or.

chat-local <string>

Cette action permet d'afficher un message local au JGO.

chat-local-using-id <string-id>

Action interne au concepteur de l'IA.

chat-local-using-range <string-id-start> <string-id-range>

Action interne au concepteur de l'IA.

chat-local-to-self <string>

Cette action permet d'afficher un message local. Le message n'est affiché que si l'utilisateur est le même joueur que le JGO qui a envoyé le message. Cette action n'est utile que pour le débogage.

chat-to-all <string>

Cette action envoie un message à tous les joueurs.

chat-to-all-using-id <string-id>

Action interne au concepteur de l'IA.

chat-to-all-using-range <string-id-start><string-id-range>

Action interne au concepteur de l'IA.

chat-to-allies <string>

Cette action envoie un message à tous les joueurs alliés.

chat-to-allies-using-id <string-id>

Action interne au concepteur de l'IA.

chat-to-allies-using-range <string-id-start> <string-id-range>

Action interne au concepteur de l'IA.

chat-to-enemies <string>

Cette action envoie un message à tous les joueurs ennemis.

chat-to-enemies-using-id <string-id>

Action interne au concepteur de l'IA.

chat-to-enemies-using-range <string-id-start> <string-id-range>

Action interne au concepteur de l'IA.

chat-to-player <player-number> <string> ;

Cette action envoie un message au joueur passé en paramètre.

chat-to-player-using-id <player-number> <string-id>

Action interne au concepteur de l'IA.

chat-to-player-using-range <player-number> <string-id-start> <string-id-range>

Action interne au concepteur de l'IA.

chat-trace <value>

Cette action affiche la valeur passée en paramètre comme un message. Cette action n'est utilisée que lors du débogage pour vérifier qu'une règle est exécutée.

clear-tribute-memory <player-number> <resource-type>

Cette action remet à zéro le compteur de tribut du joueur passé en paramètre. Seul le compteur de la ressource spécifiée en paramètre est remis à zéro. Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>. Il est aussi possible d'utiliser les variables de règle pour le paramètre <player-number>.

delete-building <building>

Cette action permet de détruire un et un seul bâtiment du type précisé en paramètre.

delete-unit <unit>

Cette action permet de détruire une et une seule unité du type précisé en paramètre.

disable-self

Cette action désactive la règle contenant l'action. La désactivation prend effet au prochain passage de règle. Les autres actions de la règle sont quand même exécutées une dernière fois.

Exemple :

(defrule

(game-time greater-than 30)

=>

(disable-self) ; désactive la règle

(chat-to-all "Déjà 30 secondes de passées ...") ; affiche le message au moins une fois.

)

disable-timer <timer-id>

Cette action désactive le timer précisé en paramètre.

enable-timer <timer-id> <value>

Cette action active le timer précisé en paramètre et l'initialise avec la valeur passée en paramètre

enable-wall-placement <perimeter>

Cette action active la pose d'un mur pour le périmètre spécifié. L'activation de la pose du mur provoque la planification du reste de la pose et place toutes les structures à au moins un carreau de distance du futur mur. Si vous planifier la construction d'un mur, vous devez définir explicitement quel périmètre vous souhaiter utiliser lorsque la partie commence. Cette action est exécutée une fois et sera utilisé pendant la configuration initiale.

Exemple :

(defrule

(enable-wall-placement 2)

=>

(disable-self)

)

generate-random-number <value>

Cette action génère un nombre entier aléatoire spécifique au JGO compris entre 1 et <value>. Ce nombre est stocké et sa valeur peut être testée. Les exécutions ultérieures de cette action généreront un nouveau nombre aléatoire qui remplacera celui existant.

log <string>

Cette action écrit le texte dans un fichier de log. Cette action n'est utile que pour les tests et ne fonctionne que si le mode log est actif.

log-trace <value>

Cette action écrit la valeur dans un fichier de log. Cette action n'est utile que pour les tests et ne fonctionne que si le mode log est actif.

release-escrow <resource-type>

Cette action libère les réserves de la ressource passée en paramètre.

research <research-item>

Cette action lance la recherche de la technologie passée en paramètre. Pour éviter de tricher, cette action utilise le même critère que l'information can-research pour être sûr que la technologie peut être recherchée.

research <age>

Cette action lance la progression vers l'age défini en paramètre.

resign

Cette action provoque l'abandon du JGO.

sell-commodity <commodity>

Cette action lance l'ordre de vente de la marchandise passée en paramètre.

set-difficulty-parameter <difficulty-parameter> <value>

Cette action modifie la valeur du paramètre de difficulté précisé en paramètre.

set-doctrine <value>

Cette action modifie la valeur de la doctrine

set-escrow-percentage <resource-type> <value>

Cette action définit le pourcentage de ressource mise en réserve pour la ressource précisée en paramètre. La valeur du pourcentage doit être compris entre 0 et 100.

set-goal <goal-id> <value>

Cette action définit la valeur de l'objectif précisé en paramètre.

set-shared-goal <shared-goal-id> <value>

Cette action définit la valeur de l'objectif partagé précisé en paramètre.

set-signal <signal-id>

Cette action lance le signal défini en paramètre. Ce signal peut être reconnu par le système de déclencheur (trigger).

set-stance <player-number> <diplomatic-stance>

Cette action permet de définir la politique diplomatique envers le joueur précisé en paramètre. Il est possible d'utiliser les paramètres jokers "any/&quo t;every" à la place du paramètre <player-number>.

set-strategic-number <strategic-number> <value>

Cette action permet de modifier la valeur du nombre stratégique passé en paramètre.

spy

Cette action exécute la commande d'espionnage.

taunt <value>

Cette action déclenche le message ou raillerie associé à la valeur passée en paramètre

taunt-using-range <taunt-start> <taunt-range>

Cette action déclenche un message aléatoire choisi parmi un intervalle de message.

Exemple:

(taunt-using-range 50 10) utilisera un message aléatoire compris entre 50 et 59.

train <unit>

Cette action lance l'entraînement du type d'unité passé en paramètre. Pour éviter de tricher, cette action utilise les mêmes crtières que l'information can-train pour s'assurer que l'unité peut être entraînée. Il est possible d'utiliser les paramètres jokers désignant une lignée d'unité à la place du paramètre <unit>.

tribute-to-player <player-number> <resource-type> <value>

Cette action provoque le versement d'une quantité de ressource au joueur défini dans les paramètres. Il y a des comportements spécifiques selon les cas :

- Si le JGO ne possède pas de marché, aucun tribut n'est distribué.

- Dans le cas où <value> est plus important que la quantité de ressource disponible, seules les ressources disponibles sont distribuées. Si par exemple, il y a 60 unités de nourriture et que le tribut est de 100 unités, seules 60 unités seront distribuées.

- Cette action est ignorée lorsqu'il n'y a pas de ressource du type précisé.

- Les taxes sur les tributs sont payés et déduits du montant du tribut (dans les cas applicables).

Il est possible d'utiliser les paramètres jokers "any/"every" à la place du paramètre <player-number>. Il est aussi possible d'utiliser les variables de règle pour le paramètre <player-number> ;.

Action d'entrée / sortie

chat-local

chat-local-using-id

chat-local-using-range

chat-local-to-self

chat-to-all

chat-to-all-using-id

chat-to-all-using-range

chat-to-allies

chat-to-allies-using-id

chat-to-allies-using-range

chat-to-enemies

chat-to-enemies-using-id

chat-to-enemies-using-range

chat-to-player

chat-to-player-using-id

chat-to-player-using-range

chat-trace

log

log-trace

taunt

taunt-using-range

Action de contrôle de règle

disable-self

Action sur les événements

acknowledge-event

acknowledge-taunt

disable-timer

enable-timer

set-signal

Actions commerciales

buy-commodity

sell-commodity

Action sur les tributs

clear-tribute-memory

tribute-to-player

Action de mise en réserve

release-escrow

set-escrow-percentage

Action en mo de régicide

spy

Action pipée

cc-add-resource

Autres actions

do-nothing

attack-now

build

build-forward

build-gate

build-wall

delete-building

delete-unit

enable-wall-placement

generate-random-number

research

resign

set-difficulty-parameter

set-doctrine

set-goal

set-shared-goal

set-stance

set-strategic-number

train

Les nombres dits stratégiques

sn-percent-civilian-explorers

Il contrôle le pourcentage d'unités civiles dédiées à l'exploration de la carte. Il doit être supérieur ou égal à 0.

sn-percent-civilian-builders

Il contrôle le pourcentage d'unités civiles dédiées à la construction de bâtiment. Il doit être supérieur ou égal à 0.

sn-percent-civilian-gatherers

Il contrôle le pourcentage d'unités civiles dédiées au recueil des ressources. Il doit être supérieur ou égal à 0.

sn-cap-civilian-explorers

Il détermine en valeur absolue le nombre maximum d'unités civiles dédiées à l'exploration de la carte. Il est pris en compte après le calcul du pourcentage. Il est ignoré si il est égal à -1. Il doit être supérieur ou égal à -1.

sn-cap-civilian-builders

Il détermine en valeur absolue le nombre maximum d'unités civiles dédiées à la construction de bâtiment. Il est pris en compte après le calcul du pourcentage. Il est ignoré si il est égal à -1. Il doit être supérieur ou égal à -1.

sn-cap-civilian-gatherers

Il détermine en valeur absolue le nombre maximum d'unités civiles dédiées au recueil des ressources. Il est pris en compte après le calcul du pourcentage. Il est ignoré si il est égal à -1. Il doit être supérieur ou égal à -1.

sn-minimum-attack-group-size

Il détermine la taille minimum d'un groupe d'attaque terrestre. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-total-number-explorers

Il détermine en valeur absolue le nombre maximum d'unités dédiées à l'exploration de la carte. Il est pris en compte après le calcul du pourcentage de la population civile et après que les groupes de soldats aient été créés. Il est ignoré si il est égal à -1.

sn-percent-enemy-sighted-response

Il détermine le pourcentage de troupes inoccupées devant réagir lorsqu'une unité est attaquée. Il doit être compris entre 0 et 100.

sn-enemy-sighted-response-distance

Il détermine la distance maximale séparant une unité subissant une attaque ennemie d'une unité inoccupée pouvant la secourir. Il doit être compris entre 0 et 144.

sn-sentry-distance

Il détermine la distance maximale à partir de laquelle les unités commenceront à défendre la ville. Il doit être supérieur ou égal à 0.

sn-relic-return-distance

Il détermine la distance maximale entre une relique et le forum pour que la relique soit considérée comme appartenant à la ville. Il doit être supérieur ou égal à 0.

sn-minimum-defend-group-size

Il détermine la taille minimale d'un groupe de défense terrestre. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-maximum-attack-group-size

Il détermine la taille maximale d'un groupe d'attaque terrestre. Il doit être supérieur ou égal à 0 et supérieur ou égale à sn-minimum-attack-group-size.

sn-maximum-defend-group-size

Il détermine la taille maximale d'un groupe de défense terrestre. Il doit être supérieur ou égal à 0 et supérieur ou égale à sn-minimum-defend-group-size.

sn-minimum-peace-like-level

Il détermine le niveau à partir duquel les JGO doivent apprécier un autre joueur avant de s'allier avec ce joueur (c'est le degré de confiance envers un joueur en quelque sorte). Il doit être compris entre 0 et 100.

sn-percent-exploration-required

Il contrôle proportion minimum d' exploration de la carte nécessaire au JGO avant que celui-ci ne réaffecte à une autre tâche la population civile exploratrice. Il doit être compris entre 0 et 100.

sn-zero-priority-distance

Il détermine la distance à partir de laquelle un ordre du JGO à une unité possède une priorité de 0. Il doit être compris entre 0 et 144.

sn-minimum-civilian-explorers

Il contrôle le nombre minimum de population civile affectée à l'exploration de la carte. Il doit être supérieur ou égal à 0.

sn-number-attack-groups

Il détermine le nombre de groupes terrestre d'attaque désiré. Il doit être supérieur ou égal à 0.

sn-number-defend-groups

Il détermine le nombre de groupes terrestre de défense désiré. Il doit être supérieur ou égal à 0.

sn-attack-group-gather-spacing

Il contrôle la proximité relative (d'un point de rassemblement d'un groupe) dans laquelle doivent se trouver les unités d'un groupe pour que ce groupe soit considéré comme réuni. Il doit être supérieur ou égal à 1.

sn-number-explore-groups

Il détermine le nombre désiré d'unités militaires terrestres affectées à l'exploration de la carte. Il doit être supérieur ou égal à 0.

sn-minimum-explore-group-size

Il détermine la taille minimum des groupes militaires terrestres affectés à l'exploration de la carte. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-maximum-explore-group-size

Il détermine la taille maximum des groupes militaires terrestres affectés à l'exploration de la carte. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0 et supérieur ou égal à sn-minimum-explore-group-size.

sn-gold-defend-priority

Il détermine la priorité de la défense des ressources d'or. Une priorité de 0 indique que l'or ne sera pas défendu. Une priorité de 1 signifie que l'or possède le plus haut degré de défense. Il doit être compris entre 0 et 7.

sn-stone-defend-priority

Il détermine la priorité de la défense des ressources de pierre. Il doit être compris entre 0 et 7.

sn-forage-defend-priority

Il détermine la priorité de la défense des ressources en nourriture. Il doit être compris entre 0 et 7.

sn-relic-defend-priority

Il détermine la priorité de la défense des reliques. Il doit être compris entre 0 et 7.

sn-town-defend-priority

Il détermine la priorité de la défense villes du JGO. Il doit être compris entre 0 et 7.

sn-defense-distance

Il détermine la distance à partir de laquelle un élément (ville comprise) est défendu. Il doit être supérieur ou égal à 0.

sn-number-boat-attack-groups

Il détermine le nombre de groupes maritimes d'attaque désiré. Il doit être supérieur ou égal à 0.

sn-minimum-boat-attack-group-size

Il détermine la taille minimum d'un groupe maritime d'attaque. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-maximum-boat-attack-group-size

Il détermine la taille maximum d'un groupe maritime d'attaque. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0 et supérieur ou égal à sn-minimum-boat-attack-group-size.

sn-number-boat-explore-groups

Il détermine le nombre de groupes maritimes désiré dédié à l'exploration de la carte. Il doit être supérieur ou égal à 0.

sn-minimum-boat-explore-group-size

Il détermine la taille minimum d'un groupe maritime dédié à l'exploration de la carte. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-maximum-boat-explore-group-size

Il détermine la taille maximum d'un groupe maritime dédié à l'exploration de la carte. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0 et supérieur ou égal à sn-minimum-boat-explore-group-size.

sn-number-boat-defend-groups

Il détermine le nombre de groupes maritimes de défense désiré. Il doit être supérieur ou égal à 0.

sn-minimum-boat-defend-group-size

Il détermine la taille minimum d'un groupe maritime de défense. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0.

sn-maximum-boat-defend-group-size

Il détermine la taille maximum d'un groupe maritime de défense. La prise en compte de ce NS est un prérequis à la constitution d'un groupe. Il doit être supérieur ou égal à 0 et supérieur ou égal à sn-minimum-boat-defend-group-size.

sn-dock-defend-priority

Il détermine la priorité de la défense du port. Il doit être compris entre 0 et 7.

sn-sentry-distance-variation

Il détermine le degré de variation autorisé dans les distances de défense. Il doit être supérieur ou égal à 0.

sn-minimum-town-size

Il détermine la taille minimum d'une ville du JGO. Il doit être supérieur ou égal à 0.

sn-maximum-town-size

Il détermine la taille maximum d'une ville du JGO. Il doit être supérieur ou égal à 0 et supérieur ou égal à sn-minimum-town-size.

sn-group-commander-selection-method

Il détermine la méthode par laquelle les chef de groupe sont choisis. 0 sélectionne l'unité possédant le plus de points de coup. 1 sélectionne l'unité possédant le moins de points de coup. 2 sélectionne l'unité avec la plus grande portée. Le commandant d'un groupe est déterminé une fois pour toute à la création du groupe et il est réinitialisé lorsqu'il meure. Il doit être compris entre 0 et 2.

sn-consecutive-idle-unit-limit

Il détermine le nombre de secondes consécutives qui passent avant qu'un groupe soit considéré comme inoccupé si toutes les unités le composant sont inoccupées. Il est utilisé uniquement durant les phases d'attaque et de fuite. Il doit être supérieur ou égal à 0.

sn-target-evaluation-distance

Il détermine le coefficient multiplicateur utilisé pour l'estimation des distances lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-hitpoints

Il détermine le coefficient multiplicateur utilisé pour l'estimation points de coup lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-damage-capability

Il détermine le coefficient multiplicateur utilisé pour l'estimation capacité de dommage lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-kills

Il détermine le coefficient multiplicateur utilisé pour l'estimation des morts lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-ally-proximity

Il détermine le coefficient multiplicateur utilisé pour l'estimation de la proximité des alliés (nombre d'alliés dans la portée) lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-rof

Il détermine le coefficient multiplicateur utilisé pour l'estimation du rythme de tir lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-randomness

Il détermine le facteur aléatoire utilisé lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-camp-max-distance

Il détermine la distance maximale autorisée entre le forum et un camp de bûcherons ou de mineurs. Il doit être supérieur ou égal à 0.

sn-mill-max-distance

Il détermine la distance maximale autorisée entre le forum et un moulin. Il doit être supérieur ou égal à 0.

sn-target-evaluation-attack-attempts

Il détermine le coefficient multiplicateur utilisé pour l'estimation des tentatives d'attaque lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-target-evaluation-range

Il détermine le coefficient multiplicateur utilisé pour l'estimation de la portée lors de l'évaluation des cibles du JGO. Il doit être supérieur ou égal à 0.

sn-defend-overlap-distance

Il détermine l'influence d'un groupe de défense. Les groupes de défense seront assignés à un poste de façon à ce que leur cercle d'influence ne se superpose pas. Il doit être supérieur ou égal à 0.

sn-scale-minimum-attack-group-size

Il détermine le facteur de graduation concernant la taille minimum d'une groupe d'attaque. Il est ajouté au NS sn-minimum-attack-group-size lors la graduation de la tactique de l'IA.

sn-scale-maximum-attack-group-size

Il détermine le facteur de graduation concernant la taille maximum d'une groupe d'attaque. Il est ajouté au NS sn-maximum-attack-group-size lors la graduation de la tactique de l'IA.

sn-attack-group-size-randomness

Il détermine le facteur aléatoire dans la taille d'un groupe d'attaque. Ceci fixe une limite dans l'aspect aléatoire de détermination de la taille minimum d'un groupe d'attaque. Le facteur aléatoire est défini une fois pour toute (lors de la création du groupe) et est compris entre 0 et ce nombre.

sn-scaling-frequency

Il détermine le nombre de minutes s'écoulant entre chaque graduation de la tactique de l'IA Il doit être supérieur ou égal à 0.

sn-maximum-gaia-attack-response

Il détermine le nombre maximum de civils devant secourir un civil attaqué par un animal sauvage. Il doit être supérieur ou égal à 0.

sn-build-frequency

Il détermine le nombre de mises à jour de la tactique de l'IA générées entre chaque entraînement ou tentative de recherche. Il doit être supérieur ou égal à 0.

sn-attack-separation-time-randomness

Il détermine la part de l'aspect aléatoire inclut dans l'intervalle de temps séparant les attaques.

sn-attack-intelligence

Il détermine si le système d'attaque intelligente est utilisé. Le système d'attaque intelligente essaye d'éviter les unités ennemis lors de l'attaque et essaye d'attaquer de différents cotés.

sn-initial-attack-delay

Il détermine le temps (en secondes) initial d'attente avant que le JGO se mette à attaquer. Il doit être supérieur ou égal à 0.

sn-save-scenario-information

Il détermine si les informations apprises par le JGO sont sauvegardées à la fin du scénario. Il prend la valeur 0 (pas de sauvegarde) ou la valeur 1 (sauvegarde).

sn-special-attack-type1

Il détermine le type d'objet ciblé en priorité par le JGO lors d'une attaque. Il doit véhiculer la valeur d'un identifiant d'objet ou la valeur -1 lorsqu'aucune attaque spécifique n'est désirée.

sn-special-attack-influence1

Il détermine le coefficient multiplicateur utilisé avec le NS sn-special-attack-type1 lors de la détermination de la cible du JGO. Il doit être positif pour orienter l'attaque du JGO vers un objet prioritaire et négatif pour éloigner le JGO de sa cible préférée.

sn-minimum-water-body-size-for-dock

Il détermine le nombre de carreaux d'eau nécessaires (en surface) pour qu'on puisse y poser un port . Il doit être supérieur ou égal à 10.

sn-number-build-attempts-before-skip

Il détermine le nombre maximum de tentatives infructueuses de contruction d'un bâtiment avant que le projet de construction soit abandonné. Il doit être supérieur ou égal à 1.

sn-max-skips-per-attempt

Il détermine le nombre maximum d'éléments non construits qui peuvent être ignorés durant une phase de planification de construction avant d'abandonner (pour être trop en avance par rapport à la position courante dans le plan). Il doit être supérieur ou égal à 1.

sn-food-gatherer-percentage

Il détermine le pourcentage d'unités dédiées au recueil de la nourriture. Il doit être compris entre 0 et 100. Ce taux est appliqué avant que l'évaluation normale des formules prenne effet.

sn-gold-gatherer-percentage

Il détermine le pourcentage d'unités dédiées au recueil de l'or. Il doit être compris entre 0 et 100. Ce taux est appliqué avant que l'évaluation normale des formules prenne effet.

sn-stone-gatherer-percentage

Il détermine le pourcentage d'unités dédiées au recueil de la pierre. Il doit être compris entre 0 et 100. Ce taux est appliqué avant que l'évaluation normale des formules prenne effet.

sn-wood-gatherer-percentage

Il détermine le pourcentage d'unités dédiées au recueil du bois. Il doit être compris entre 0 et 100. Ce taux est appliqué avant que l'évaluation normale des formules prenne effet.

sn-target-evaluation-continent

Il désigne une valeur additionnelle utilisée pour l'évaluation des cibles se trouvant sur le même continent que le commandant d'un groupe d'attaque. Il doit être positif pour orienter le JGO vers l'attaque des unités se trouvant sur le même continent ou nul lorsqu'on ne souhaite pas influencer le comportement du JGO.

sn-target-evaluation-siege-weapon

Il désigne une valeur additionnelle utilisée pour conditionner les armes de siège à attaquer les cibles fixes (et pour conditionner les autres à ne pas attaquer les cibles fixes). Il doit être positif pour influencer les armes de siège du JGO dans ce sens et nul lorsqu'on ne souhaite pas un comportement spécial.

sn-group-leader-defense-distance

Il détermine la distance de défense des protecteurs d'un chef de groupe d'attaque important. Il doit être supérieur ou égal à 1.

sn-initial-attack-delay-type

Il désigne le type d'attente de la première attaque du JGO. La valeur 1 signifie que le JGO attend que tous les bâtiments de sa liste soient construits. La valeur 2 utilise le NS sn-initial-attack-delay pour calculer le délai d'attente. La valeur 3 permet au JGO d'attaquer après avoir été attaqué par un joueur autre que Gaia. La valeur 0 signifie que chaque mode vu précédemment peut déclencher l'attaque.

sn-blot-exploration-map

Il détermine si le JGO explore à nouveau les régions qu'il a déjà exploré. La valeur 1 signifie qu'il réexplore, la valeur 0 signifie qu'il ne le fait pas.

sn-blot-size

Il désigne la taille de la zone que le JGO devra explorer à nouveau. Il doit être compris entre 0 et la taille de la carte.

sn-intelligent-gathering

Aucune information disponible !

sn-task-ungrouped-soldiers

Il détermine si les soldats du JGO non affectés à un groupe ont pour tâche de se déployer et de garder la ville du JGO. Il doit être égal à 0 ou 1.

sn-target-evaluation-boat

Il désigne une valeur additionnelle utilisée pour conditionner les unités terrestres à l'attaque des bateaux. Il doit être positif pour influencer dans ce sens, nul pour qu'il n'y ait pas de comportement spécial et négatif pour éloigner les unités terrestres des bateaux.

sn-number-enemy-objects-required

Il détermine le nombre nécessaires d'objets ennemis visibles par le JGO avant d'abaisser à son niveau le plus bas le nombre d'unités civiles dédiées à l'exploration. Il doit être supérieur ou égal à 0.

sn-number-max-skip-cycles

Aucune information disponible !

sn-retask-gather-amount

Il détermine la quantité minimum qu'une unité dédiée au recueil des ressources doit amasser avant que le JGO lui permette d'être réorientée vers un autre type de ressource. Certains codages outrepassent ce SN. Il doit être supérieur ou égal à 0.

sn-max-retask-gather-amount

Il détermine la quantité maximum qu'une unité dédiée au recueil des ressources doit amasser avant que le JGO lui permette d'être réorientée vers un autre type de ressource. Certains codages outrepassent ce SN. Il doit être supérieur ou égal à 0.

sn-max-build-plan-gatherer-percentage

Il détermine le pourcentage maximum d'unités dédiées au recueil des ressources que le JGO pourra affecter à cette tâche compte tenu des exigences de planification de construction de bâtiments définies avant le jeu. Il est compris entre 0 et 100.

sn-food-dropsite-distance

Il désigne le nombre maximum de carreaux que le JGO souhaite parcourir pour déposer sa nourriture. Il doit être supérieur ou égal à 3.

sn-wood- dropsite-distance

Il désigne le nombre maximum de carreaux que le JGO souhaite parcourir pour déposer son bois. Il doit être supérieur ou égal à 3.

sn-stone-dropsite-distance

Il désigne le nombre maximum de carreaux que le JGO souhaite parcourir pour déposer sa pierre. Il doit être supérieur ou égal à 3.

sn-gold-dropsite-distance

Il désigne le nombre maximum de carreaux que le JGO souhaite parcourir pour déposer son or. Il doit être supérieur ou égal à 3.

sn-initial-exploration-required

Il détermine le pourcentage de la carte que le JGO doit avoir exploré avant qu'une construction soit autorisée. Il doit être compris entre 0 et 100.

sn-random-placement-factor

Il désigne un nombre utilisé pour placer aléatoirement les constructions du JGO. Il doit être supérieur ou égal à 0.

sn-required-forest-tiles

Aucune information disponible !

sn-attack-diplomacy-impact

Il détermine la répercussion (positive ou négative) qu'un JGO injecte dans son système de diplomacie lorsqu'il est attaqué. Il est compris entre 0 et 100.

sn-percent-half-exploration

Il détermine le pourcentage d'exploration de la carte à partir duquel le JGO peut entreprendre de diminuer de moitié l'effectif des unités dédiées à l'exploration. Il doit être supérieur ou égal à 0.

sn-target-evaluation-time-kill-ratio

Il désigne l'influence du temps nécessaire pour tuer une cible sur le choix de l'objet à attaquer. Il doit être supérieur ou égal à 0.

sn-target-evaluation-in-progress

Il détermine l'intérêt de continuer à attaquer un cible qui subit déjà une attaque. Il doit être supérieur ou égal à 0.

sn-attack-winning-player

Il détermine si le JGO attaquera le joueur qui est en train de gagner (si il y a plusieurs joueurs). Il est égal à 0 ou 1.

sn-coop-share-information

Il détermine si les JGO alliés partage l'information de ce qu'ils ont découvert (ce n'est pas comme la Cartographie; c'est analogue à une conversation entre deux joueurs humains). Il est égal à 0 ou 1.

sn-attack-winning-player-factor

Il détermine l'influence sur le choix de l'ennemi à attaquer (si le JGO a plusieurs ennemis) lorsque le SN sn-attack-winning-player a la valeur 1. Il doit être compris entre 0 et 100.

sn-coop-share-attacking

Il détermine si les JGO alliés peuvent attaquer pour se défendre mutuellement. Il est égal à 0 ou 1.

sn-coop-share-attacking-interval

Il détermine tous les combien de temps (en secondes) le JGO peut demander de l'aide à un autre joueur. Il doit être supérieur ou égal à 0.

sn-percentage-explore-exterminators

Il détermine combien de groupes de soldats du JGO dédiés à l'exploration ont pour tâche d'exterminer ce qu'ils trouvent. Il est compris entre 0 et 100.

sn-track-player-history

Il détermine si les tendances d'un joueur humain sont traquées ou pas. Il doit être égal à 0 ou 1.

sn-minimum-dropsite-buffer

Il contrôle la distance minimum entre un site d'exploitation du JGO et les forums ennemis. Il est égal à 0 ou 1.

sn-use-by-type-max-gathering

Il détermine si les besoins en ressources se basent sur la quantité de ressources que les unités, dédiées à cette tâche, doivent ramasser avant de pouvoir être affectées à une autre tâche. Il doit être égal à 0 ou 1.

sn-minimum-boar-hunt-group-size

Il détermine le nombre de civils que le JGO doit réunir avant que la chasse aux sangliers ne soit possible pour la collecte de nourriture. Il doit être supérieur ou égal à 1

sn-minimum-amount-for-trading

Il contrôle la quantité d'une ressource que le JGO doit avoir en sa possession avant qu'il puisse l'utiliser pour le commerce. Il doit être supérieur ou égal à 0.

sn-easiest-reaction-percentage

Il détermine le pourcentage de réaction en vigueur qu'une unité du JGO utilisera contre un unique joueur dans un scénario ou une campagne au niveau de difficulté le plus facile. Il doit être compris entre 0 et 100.

sn-easier-reaction-percentage

Il détermine le pourcentage de réaction en vigueur qu'une unité du JGO utilisera contre un unique joueur dans un scénario ou une campagne au niveau de difficulté facile. Il doit être compris entre 0 et 100.

sn-hits-before-alliance-change

Il détermine le nombre de fois qu'une unité du JGO peut être frappée par un allié avant que le JGO ne permette un changement de diplomacie. Il doit être supérieur ou égal à 0.

sn-allow-civilian-defense

Aucune information disponible !

sn-number-forward-builders

Aucune information disponible !

sn-percent-attack-soldiers

Aucune information disponible !

sn-percent-attack-boats

Aucune information disponible !

sn-do-not-scale-for-difficulty-level

Aucune information disponible !

sn-group-form-distance

Aucune information disponible !

sn-ignore-attack-group-under-attack

Aucune information disponible !

sn-gather-defense-units

Aucune information disponible !

sn-maximum-<<ressource>>-drop-distance

Il détermine la distance maximum entre le site d'exploitation et une ressource. A partir de cette distance le JGO va ignorer cette ressource. Une valeur de -1 indique qu'il ne faut jamais ignorer les ressources quelque soit leur distance avec le site d'exploitation. Ce NS est défini par défaut avec la valeur -1. En changeant ce NS avec une valeur appropriée, il est possible d'éviter d'avoir des villageois se baladant partout sur la carte pour récupérer des ressources.

Exemple :

sn-maximum-wood-drop-distance (bois)

sn-maximum-food-drop-distance (nourriture)

sn-maximum-hunt-drop-distance (animaux sauvages)

sn-maximum-fish-boat-drop-distance (poisson)

sn-maximum-gold-drop-distance (or)

sn-maximum-stone-drop-distance (pierre)

Le chargement conditionnel et les symboles définis du système

Le chargement conditionnel vous permet de charger spécifiquement les règles qui s'adaptent le mieux à la configuration de la partie. Ce système est en quelque sorte similaire au préprocesseur C/C++. Les principales différences sont les suivantes :

Le mécanisme de chargement conditionnel fonctionne dans le même passage que le parsage qui charge les règles. Donc ce n'est pas un préprocesseur.

Le mécanisme de chargement conditionnel décide si une règle est chargée ou non. Il ne décide pas si une règle doit être parsée.

La dernière différence vient de la volonté de rendre la vérification de la syntaxe aussi simple que possible : un unique chargement du script lors du paramétrage d'une partie contrôlera toutes les règles pour retrouver les erreurs de syntaxe.

Le système fournit automatiquement un ensemble de symboles qui reflète le paramétrage du jeu. Ces symboles peuvent être testés pour choisir quelles règles seront chargées.

Le chargement conditionnel offre trois avantages majeurs :

La capacité d'intégrer des règles offrant un large panel de comportement au sein d'une seule personnalité IA.

Les règles chargées sont plus rapides. Par exemple, si certaines règles sont chargées uniquement lorsque la carte est de type archipel, il n'est pas utile pour ces règles de vérifier le type de la carte.

Les règles qui ne s'appliquent pas au paramétrage courant ne sont pas chargées, ceci permet d'économiser de l'espace mémoire.

Le chargement conditionnel reconnaît quatre directives :

#load-if-defined <system-defined-symbol>

#load-if-not-defined <system-defined-sy mbol>

#else,

#end-if

Ces directives sont utilisées ensemble pour former les constructions suivantes :

Construction 1 :

#load-if-defined <system-defined-symbol>

...Définir les règles ici

#end-if

Construction 2 :

#load-if-not-defined <system-defined-symbol>

...Définir les règles ici

#end-if

Construction 3 :

#load-if-defined <system-defined-symbol>

...Définir les règles ici

#else

...Définir les règles ici

#end-if

Construction 4 :

#load-if-not-defined <system-defined-symbol>

...Définir les règles ici

#else

...Définir les règles ici

#end-if

L'exemple suivant montre comment charger spécifiquement des règles en se basant sur le paramètre de difficulté d'une partie :

#load-if-defined DIFFICULTY-EASIEST

(defrule

(true)

=>

(chat-to-all "C'est le mode le plus facile")

(disable-self)

)

#end-if

Les directives de chargement conditionnel tolèrent jusqu'à 50 niveaux d'imbrication.

Les symboles définis

Il existe deux types de symboles définis par le système :

Les symboles qui fournissent une information sur le paramétrage du jeu choisie au sein d'une liste de valeurs prédéfinies. Dans ce cas, un symbole appartenant à un groupe de symboles sera toujours défini. Un bon exemple est la taille de la carte, elle sera toujours choisie au sein d'un ensemble de tailles prédéfinies.

Les symboles qui fournissent une information sur le paramétrage du jeu de part leur état (actif ou inactif, vrai ou faux). Dans ce cas, le symbole est défini si le paramètre du jeu est vérifié. C'est le cas par exemple du symbole REGICIDE.

Chaque symbole défini par le système possède une portée : globale ou locale. Un symbole de portée globale est une information partagée par tous les joueurs alors qu'un symbole de portée locale est spécifique à un joueur. Par exemple, le symbole DEATH-MATCH est global car cette information est vraie pour tous les joueurs d'une partie; le symbole JAPANESE-CIV est local car l'information sera vraie pour un joueur japonais et fausse pour les joueurs anglais, francs, celtiques, ...

Liste des symboles définis par le système

	Sujet
	Portée
	Type
	Symbole

	Type de jeu
	Globale
	2
	DEATH-MATCH
REGICIDE

	Epoque en début de partie
	Globale
	1
	DARK-AGE-START
FEUDAL-AGE-START
CASTLE-AGE-START
IMPERIAL-AGE-START
POST-IMPERIAL-AGE-START

	Ressources en début de partie
	Globale
	1
	LOW-RESOURCES-START
MEDIUM-RESOURCES-START
HIGH-RESOURCES-START

	Taille de la carte
	Globale
	1
	TINY-MAP
SMALL-MAP
MEDIUM-MAP
NORMAL-MAP
LARGE-MAP
GI ANT-MAP

	Type de carte
	Globale
	1
	ARABIA-MAP
ARCHIPELAGO-MAP
BALTIC-MAP
BLACK-FOREST-MAP
COASTAL-MAP
CONTINENTAL-MAP
CRATER-LAKE-MAP
FORTRESS-MAP
GOLD-RUSH-MAP
HIGHLAND-MAP
ISLANDS-MAP
MEDITERRANEAN-MAP
MIGRATION-MAP
RIVERS-MAP
TEAM-ISLANDS-MAP
SCENARIO-MAP

	Sujet
	Portée
	Type
	Symbole

	Type de victoire
	Globale
	1
	VICTORY-STANDARD
VICTORY-CONQUEST
VICTORY-TIME-LIMIT
VICTORY-SCORE
VICTORY-CUSTOM

	Niveau de difficulté
	Globale
	1
	DIFFICULTY-EASIEST
DIFFICULTY-EASY
DIFFICULTY-MODERATE
DIFFICULTY-HARD
DIFFICULTY-HARDEST

	Capacité maximale de population
	Globale
	1
	POPULATION-CAP-25
POPULATION-CAP-50
POPULATION-CAP-75
POPULATION-CAP-100
POPULATION-CAP-125
POPULATION-CAP-150
POPULATION- CAP-175
POPULATION-CAP-200

	Verrouillage de la vitesse du jeu
	Globale
	2
	GAME-SPEED-LOCKED

	Verrouillage des équipes
	Globale
	2
	TEAMS-LOCKED

	Civilisation du joueur
	Locale
	1
	GAIA
BRITON-CIV
BYZANTINE-CIV
CELTIC-CIV
CHINESE-CIV
FRANKISH-CIV
GOTHIC-CIV
JAPANESE-CIV
MONGOL-CIV
PERSIAN-CIV
SARACEN-CIV
TEUTONIC-CIV
TURKISH-CIV
VIKING-CIV

Le chargement conditionnel et les constantes définies par l'utilisateur

Une combinaison entre le chargement conditionnel et les constantes définies par l'utilisateur offre de puissantes possibilités de paramétrage. Une utilisation courante est la graduation de paramètres. En fonction des conditions, les paramètres de mêmes noms vont posséder des valeurs différentes. Cette technique réduit le nombre de règles nécessaires et rend le code plus lisible.

Exemple :

#load-if-defined DEATH-MATCH

(defconst dark-age-villagers 6) ; Règle 1

#else

(defconst dark-age-villagers 22) ; Règle 2

#end-if

En mode combat à mort le nombre de villageois est réduit par rapport aux autres parties.

Remarque :

Une constante ne peut être redéfinie avec une nouvelle valeur :

(defconst ma-constante 1)

(defconst ma-constante 2)

Ce code provoquera l'erreur ERR2012: Constant Already Defined: ma-constante (Constante déjà définie : ma-constante)

Par contre,

(defconst ma-constante 1)

(defconst ma-constante 1)

ce code ne provoquera pas d'erreur car la constante conserve la même valeur. Cependant, ce genre de code n'apporte aucun intérêt ...

Dans notre exemple, les règles 1 et 2 ne sont jamais chargées ensemble, on se trouve toujours soit dans le cas 1, soit dans le cas 2 donc on ne rencontre pas l'erreur ERR2012.

Les constantes définies du système

Pour chaque JGO, le système définit un ensemble de constantes qui rend l'écriture des règles plus aisée et plus efficace. Les voici :

my-player-number (type <player-number>) : Numéro de ma civilisation

my-civ (type <civ>) : Type de ma civilisation

my-unique-unit (type <unit>) : Type de mon unité spéciale

my-unique-unit-upgrade (type <research-item>) : Type de recherche de mon unité spéciale

my-elite-unique-unit (type <unit>) : Type de mon unité d'élite

my-unique-unit-line (type <unit>) : Type de ma lignée d'unité spéciale

Les paramètres

Ils permettent de définir de façon plus précise la configuration d'une partie. Ils sont associés aux informations de contexte.

La valeur d'un paramètre peut être prédéfinie comme pour le paramètre <age> ou numérique comme pour le paramètre <goal-id>.

Les paramètres standards :

	Nom
	Valeur
	Remarques

	<age>
(âge)
	dark-age (âge sombre)
feudal-age (âge féodal)
castle-age (âge des chateaux)
imperial-age (âge impérial)
	post-imperial-age peut être utilisé pour définir l'âge de début de partie

	<building>
(construction)
	archery-range (camp des archers)
barracks (caserne)
blacksmith (forge)
bombard-tower (tour de bombarde)
castle (chateau)
dock (port)
farm (ferme)
fish-trap (filet de pêche)
guard-tower (tour de garde)
house (maison)
keep (donjon)
lumber-camp (camp des bucherons)
market (marché)
mill (moulin)
mining-camp (camp des mineurs)
monastery (monastère)
outpost (avant-poste)
siege-workshop (atelier de siège)
stable (étable)
town-center (forum)
university (université)
watch-tower (tour de guet)
wonder (merveille)
	Ce paramètre accepte aussi les valeurs des paramètres jokers

	<civ>
(civilisation)
	briton (britannique)
byzantine (byzantin)
celtic (celte)
chinese (chinois)
frankish (franc)
gothic (goth)
japanese (japonais)
mongol (mongol)
persian (perse)
saracen (sarrasin)
teutonic (teuton)
turkish (turc)
viking (viking)
	

	<commodity>
(marchandise)
	food (nourriture)
stone (pierre)
wood (bois)
	

	<difficulty>
(difficulté)
	easiest (très facile)
easy (facile)
moderate (intermédiaire)
hard (difficile)
hardest (très difficile)
	L'ordre des paramètres de difficulté est l'opposé de celui que l'on pourrait attendre !
Assurez vous que vous en tenez compte lors des contrôles de validité des règles comparant des difficultés.
easiest > easy > moderate > hard > hardest

	Nom
	Valeur
	Remarques

	<difficulty-parameter>
(les paramètres de difficulté)
	ability-to-dodge-missiles (capacité d’esquive d’un projectile)
ability-to-maintain-distance (capacité à maintenir la distance avec un adversaire)
	ability-to-dodge-missiles : probabilité qu’une unité du JGO évite un projectile. Intervalle de valeur : 0 – 100, valeur par défaut : 100
ability-to-maintain-distance : probabilité qu’une unité, en train de courir, du JGO garde la distance vis-à-vis de l’adversaire.Intervalle de valeur : 0 – 100, valeur par défaut : 100

	<diplomatic-stance>
(position diplomatique)
	ally (allié)
neutral (neutre)
enemy (ennemi)
	

	<event-id>
(identifiant d’événement)
	
	Ce paramètre possède un intervalle de définition variant selon le type d’événement. Pour les déclencheurs (trigger), l’intervalle est 0 – 255.

	<event-type>
(type d’événement)
	trigger
	

	<goal-id>
(identifiant d’objectif)
	valeur dans l’intervalle 0 – 40.
	

	<map-size>
(taille de la carte)
	tiny (très petite)
small (petite)
medium (moyenne)
normal (normale)
large (grande)
giant (très grande)
	

	<map-type>
(type de la carte)
	arabia (arabie)
archipelago (archipel)
baltic (baltique)
black-forest (forêt noire)
coastal (côte)
continental (continent)
crater-lake (lac du cratère)
fortress (forteresse)
gold-rush (ruée vers l’or)
highland (montagne)
islands (îles)
mediterranean (Méditerranée)
migration (emigration)
rivers (rivières)
team-islands (îles partenaires)
scenario-map (carte de scénario)
	

	<perimeter>
(périmètre)
	1 (entre 10 et 20 carreaux du forum)
2 (entre 18 et 30 carreaux du forum)
	

	<player-number>
(nombre du joueur)
	un nombre valide
	Ce paramètre accepte aussi les valeurs des paramètres jokers dans certaines actions ou conditions

	Nom
	Valeur
	Remarques

	<rel-op>
(opérateur de comparaison)
	less-than (strictement inférieur à)
less-or-equal (inférieur ou égal à)
greater-than (strictement supérieur à)
greater-or-equal (supérieur ou égal à)
equal (égal à)
not-equal (différent de)
	raccourci : <
raccourci : <=
raccourci : >
raccourci : >=
raccourci : ==
raccourci : !=

	<research-item>
(élément de recherche)
	Recherche du camp de tir à l'arc :
ri-arbalest (arbalétrier)
ri-crossbow (fantassin à arc)
ri-elite-skirmisher (tirailleur d'élite)
ri-hand-cannon (canonnier à main)
ri-heavy-cavalry-archer (archer de cavalerie lourde)
Recherche de la caserne :
ri-champion (champion)
ri-long-swordsman (épée longue)
ri-man-at-arms (homme d'armes)
ri-pikeman (piquier)
ri-squires (écuyer)
ri-tracking (pistage)
ri-two-handed-swordsman (épée à deux mains)
Recherche de la forge :
ri-blast-furnace (haut fourneau)
ri-bodkin-arrow (flèche à poinçon)
ri-bracer (brassard)
ri-chain-barding (barde chaînée)
ri-chain-mail (cotte de maille chaînée)
ri-fletching (empennage)
ri-forging (forge)
ri-iron-casting (fonderie)
ri-leather-archer-armor (armure d'archer en cuir)
ri-padded-archer-armor (armure d'archer matelassé)
ri-plate-barding (barde plaquée)
ri-plate-mail (cotte de maille plaquée)
ri-ring-archer-armor (armure d'archer chaînée)
ri-scale-barding (barde écaillée)
ri-scale-mail (cotte de maille écaillée)
Recher che du château :
ri-conscription (conscription)
ri-hoardings (espion)
ri-sappers (artificier)
ri-elite-berserk (fou de guerre d'élite)
ri-elite-cataphract (cataphracte d'élite)
ri-elite-chu-ko-nu (cho ku nu d'élite)
ri-elite-huskarl (huskarl d'élite)
ri-elite-janissary (janissaire d'élite)
ri-elite-longbowman (archer long d'élite)
ri-elite-mameluke (mamelouk d'élite)
ri-elite-mangudai (mangudaï d'élite)
ri-elite-samurai (samouraï d'élite)
ri-elite-teutonic-knight (chevalier teutonique d'élite)
ri-elite-throwing-axeman (lanceur de hache d'élite)
ri-elite-war-elephant (éléphant de guerre d'élite)
ri-elite-woad-raider (guerrier de guède d'élite)
Recherche du port :
ri-cannon-galleon (galion à canon)
ri-careening (carénage)
ri-deck-guns
ri-dry-dock (cale sèche)
ri-elite-longboat (drakkar d'élite)
ri-fast-fire-ship (navire d'incendie rapide)
ri-galleon (galion)
ri-heavy-demolition-ship (navire de démolition lourd)
ri-shipwright (constructeur de navire)
ri-war-galley (galère de guerre)
Recherche du camp des bucherons :
ri-bow-saw (scie à archer)
ri-double-bit-axe (hache à double tranchant)
ri-two-man-saw (scie à deux bras)
Recherche du marché :
ri-banking (banque)
ri-cartography (cartographie)
ri-coinage (frappe de monnaie)
ri-guilds (guilde)
Recherche du moulin :
ri-crop-rotation (alternance des cultures)
ri-heavy-plow (labourage lourd)
ri-horse-collar (harnais de cheval)
Recherche du camp des mineurs :
ri-gold-mining (mine d'or)
ri-gold-shaft-mining (puit de forage d'or)
ri-stone-mining (carrière)
ri-stone-shaft-mining (puit de forage de pierre)
Recherche du monastère :
ri-atonement (expiation)
ri-block-printing (imprimerie)
ri-faith (foi)
ri-fervor (ferveur)
ri-illumination (illumination)
ri-redemption (rédemption)
ri-sanctity (sainteté)
Recherche de l'atelier de siège :
ri-bombard-cannon (canon à bombarde)
ri-capped-ram (bélier renforcé)
ri-heavy-scorpion (scorpion lourd)
ri-onager (onagre)
ri-scorpion (scorpion)
ri-siege-onager (onagre de siège)
ri-siege-ram (bélier de siège)
Recherche de l'écurie :
ri-cavalier (cavalier)
ri-heavy-camel (chameau lourd)
ri-husbandry (élevage)
ri-light-cavalry (cavalerie légère)
ri-paladin (paladin)
Recherche du forum :
ri-hand-cart (charette à bras)
ri-loom (métier à tisser)
ri-town-patrol (patrouille de ville)
ri-town-watch (tour de guet)
ri-wheel-barrow (brouette)
Recherche de l'université :
ri-architecture (architecture)
ri-ballistics (balistique)
ri-bombard-tower (tour de bombarde)
ri-chemistry (chimie)
ri-fortified-wall (mur fortifié)
ri-guard-tower (tour de garde)
ri-heated-shot (projectile en feu)
ri-keep (donjon)
ri-masonry (maçonnerie)
ri-murder-holes (meurtrière)
ri-siege-engineers (expert de siège)
ri-stonecutting (grue à poulie)
	Remarque :
Le préfixe "ri- " permet d'éviter la duplicité des symboles. Sans ce préfixe, le parseur serait incapable de faire la différence entre un élément de recherche et un bâtiment/unité. Par exemple, paladin pourrait signifier l'unité ou l'élément de recherche.

	Nom
	Valeur
	Remarques

	<resource-type>
(type de ressource)
	food (nourriture)
gold (or)
stone (pierre)
wood (bois)
	

	<shared-goal-id>
(identifiant d’objectif partagé)
	valeur dans l’intervalle 0 – 255
	

	<signal-id>
(identifiant de signal)
	valeur dans l’intervalle 0 – 255
	

	<starting-resources>
(ressources allouée au départ)
	low-resources (peu de ressources)
medium-resources (ressources moyennes)
high-resources (beaucoup de ressources)
	

	<strategic-number>
(nombre stratégique)
	un nombre valide
	voir chapitre « les nombres dits stratégiques »

	<string>
(chaîne)
	une chaîne valide
	une chaîne est une séquence de caratères entre double quotes

	<string-id>
(identifiant de chaîne)
	un nombre valide
	paramètre interne au concepteur de l’IA.

	<string-id-range> (intervalle de chaîne)
	un nombre valide
	paramètre interne au concepteur de l’IA.

	<string-id-start>
(chaîne de début)
	un nombre valide
	paramètre interne au concepteur de l’IA.

	<taunt-id>
(identifiant de message)
	un nombre valide
	

	<taunt-range>
(intervalle de message)
	un nombre valide
	

	<taunt-start>
(message de début d’intervalle)
	un nombre valide
	

	<timer-id>
(identifiant de timer)
	valeur dans l’intervalle 0 – 10
	

	Nom
	Valeur
	Remarques

	<unit>
(unité)
	Unités de la lignée des archers :
arbalest (arbalète)
archer (archer)
cavalry-archer (archer de cavalerie)
crossbowman (fantassin à arc)
elite-skirmisher (tirailleur d'élite)
hand-cannoneer (canonnier à main)
heavy-cavalry-archer (archer de cavalerie lourde)
skirmisher (tirailleur)
Unités de caserne :
champion (champion)
long-swordsman (fantassin à épée longue)
man-at-arms (homme d'armes)
militiaman (milice)
pikeman (piquier)
spearman (lancier)
two-handed-swordsman (fantassin à épée à deux main)
Unités de château :
berserk (fou de guerre)
cataphract (cataphracte)
chu-ko-nu (cho ku nu)
elite-berserk (fou de guerre d'élite)
elite-cataphract (cataphracte d'élite)
elite-chu-ko-nu (cho ku nu d'élite)
elite-huskarl (huskarl d'élite)
elite-janissary (janissaire d'élite)
elite-longbowman (archer long d'élite)
elite-mameluke (mamelouk d'élite)
elite-mangudai (mangudaï d'élite)
elite-samurai (samouraï d'élite)
elite-teutonic-knight (chevalier teutonique d'élite)
elite-throwing-axeman (lanceur de hache d'élite)
elite-war-elephant (éléphant de guerre d'élite)
elite-woad-raider (guerrier de guède d'élite)
huskarl (huskarl)
janissary (janissaire)
longbowman (archer long)
mameluke (mamelouk)
mangudai (mangudaï)
samurai (samouraï)
teutonic-knight (chevalier teutonique)
throwing-axeman (lanceur de hache)
trebuchet (trébuchet)
war-elephant (éléphant de guerre)
woad-raider (guerrier de guède)
Unités portuaires :
cannon-galleon (galion à canon)
demolition-ship (navire de démolition)
elite-cannon-galleon (galion à canon d'élite)
elite-longboat (drakkar d'élite)
fast-fire-ship (navire d'incende rapide)
fire-ship (navire d'incende)
fishing-ship (navire de pêche)
galleon (galion)
galley (galère)
heavy-demolition-ship (navire de démolition lourd)
longboat (drakkar)
trade-cog (navire marchand)
transport-ship (navire de transport)
war-galley (galère de guerre)
Unité commerciale :
trade-cart (charette de commerce)
Unité monacale :
monk (moine)
Unités de l'atelier de siège :
battering-ram (bélier)
bombard-cannon (canon à bombarde)
capped-ram (bélier renforcé)
heavy-scorpion (scorpion lourd)
mangonel (manganneau)
onager (onagre)
scorpion (scorpion)
siege-onager (onagre de siège)
siege-ram (bélier de siège)
Unités de l'écurie :
camel (chameau)
cavalier (cavalier)
heavy-camel (chameau lourd)
knight (chevalier)
light-cavalry (cavalerie légère)
paladin (paladin)
scout-cavalry (cavalerie d'éclaireurs)
Unité du forum :
villager (villageois)
	Ce paramètre accepte aussi les valeurs des paramètres jokers

	<value>
(valeur)
	valeur dans l'intervalle -32768 à 32727
	Entier signé sur 16 bits pour ceux et ceuses qui développent des applications.

	<victory-condition>
(condition de victoire)
	standard (standard)
conquest (conquête)
time-limit (limite de temps)
score (score)
custom (personnalisée)
	

	<wall>
	fortified-wall (mur fortifié)
palisade-wall (palissade)
stone-wall (mur de pierre)
	Le paramètre joker stone-wall-line est accepté comme valeur.

Les paramètres jokers

Ils peuvent être utilisés à la place des paramètres standards dans certains cas. Ils désignent pour la plupart un ensemble de valeurs possibles.

Une lignée représente l'ensemble des éléments désignés par cette lignée. Par exemple, le joker archer-line représente les archers, les fantassins à arc et les arbalétriers. Ils sont utiles pour faire des tests simples sans se soucier du contexte d'époque.

Imaginez que vous souhaitez avoir une armée composée d'au moins dix archers quelque soit l'âge dans lequel vous vous trouvez.
Vous pouvez écrire cette règle :
(defrule
(unit-type-count archer-line <= 10)
(can-train archer-line)
=> (train archer-line)
)

A l'âge féodal, cette règle permet de créer des archers, à l'âge des chateaux, elle crée des fantassins à arc et à l'âge impérial, elle pemet la création d'arbalétriers.
	Type
	Valeur

	<player-number>
(nombre du joueur)
	any-ally (au moins un allié)
any-computer (au moins un JGO)
any-computer-ally (au moins un JGO allié)
any-computer-enemy (au moins un JGO ennemi)
any-computer-neutral (au moins un JGO neutre)
any-enemy (au moins un ennemi)
any-human (au moins un humain)
any-human-ally (au moins un allié humain)
any-human-enemy (au moins un ennemi humain)
any-human-neutral (au moins un humain neutre)
any-neutral (au moins un joueur neutre)
every-ally (tous les alliés)
every-computer (tous les JGO)
every-enemy (tous les ennemis)
every-human (tous les humains)
every-neutral (tous les joueurs neutres)

	<building>
(construction)
	watch-tower-line (lignée des tours de garde)

	<unit> camp de tir à l'arc
	archer-line (lignée des archers)
cavalry-archer-line (lignée des archers de cavalerie)
skirmisher-line (lignée des tirailleurs)

	<unit> caserne
	militiaman-line (lignée des miliciens)
spearman-line (lignée des lanciers)

	<unit> chateau
	berserk-line (lignée des fous de guerre)
cataphract-line (lignée des cataphractes)
chu-ko-nu-line (lignée des cho ku nu)
huskarl-line (lignée des huskarls)
janissary-line (lignée des janissaires)
longbowman-line (lignée des archers longs)
mameluke-line (lignée des mamelouks)
mangudai-line (lignée des mangudaïs)
samurai-line (lignée de samuraïs)
teutonic-knight-line (lignée de chevaliers teutoniques)
throwing-axeman-line (lignée des lanceurs de hache)
war-elephant-line (lignée des éléphants de guerre)
woad-raider-line (lignée des guerriers de guède)

	<unit> port
	cannon-galleon-line (lignée des galions à canon)
demolition-ship-line (lignée des navires de démolition)
fire-ship-line (lignée des navires d'incendie)
galley-line (lignée des galères)
longboat-line (lignée des drakkars)

	<unit> atelier de siège
	battering-ram-line (lignée de béliers)
mangonel-line (lignée des manganneaux)
scorpion-line (lignée des scorpions)

	<unit> écurie
	camel-line (lignée des chameaux)
knight-line (lignée des chevaliers)
scout-cavalry-line (lignée de cavalerie d'éclaireurs)

	<wall> mur
	stone-wall-line (lignée des murs de pierre)

Le degré de difficulté du jeu

Les paramètres de difficulté sont des paramètres tactiques qui devront être ajustés en fonction de la configuration de la difficulté dans la partie.

ability-to-dodge-missiles (capacité d'esquive d'un projectile) : par exemple, si un adversaire tire sur votre unité avec un canon, c'est le pourcentage de chance que possède votre unité lorsqu'elle essaye d'éviter l'aire où le boulet va tomber. L'esquive rend le JGO plus difficile à tuer. Si la valeur est 100, le JGO essaiera systématiquement d'éviter vos tirs.

ability-to-maintain-distance (capacité de maintenir sa distance) : Si un JGO utilise un archer pour attaquer un chevalier ennemi, c'est le pourcentage de chance que votre archer puisse se sauver et tirer si le chevalier avance vers lui. Si la valeur est 100, l'archer essayera toujours de se sauver.

Les variables locales aux règles

Les variables de règles sont des variables ayant une portée limitée à la règle qui les utilise. Cela signifie que ces variables sont renseignées à l'intérieur de la règle et qu'elles ne peuvent être utilisées que dans cette règle.

Voici la liste des variables disponibles :

this-any-ally (un allié défini)

this-any-computer (un JGO défini)

this-any-computer-ally (un JGO allié défini)

this-any-computer-enemy (un JGO ennemi défini)

this-any-computer-neutral (un JGO neutre défini)

this-any-enemy (un ennemi défini)

this-any-human (un humain défini)

this-any-human-ally (un humain allié défini)

this-any-human-enemy (un humain ennemi défini)

this-any-human-neutral (un humain neutre défini)

this-any-neutral (un joueur neutre défini)

Ces variables peuvent être utilisées à la place du paramètre <player-number> dans les actions suivantes :

chat-to-player

chat-to-player-using-id

clear-tribute-memory

set-stance

tribute-to-player
Ces variables sont renseignées par le paramètre joker associé utilisé dans les informations de contexte. Par exemple, le joker any-ennemi correspondant stockera sa valeur dans this-any-ennemi.

Voici un exemple d'utilisation de variables de règles :

(defrule

(players-civ any-enemy gothic)

=>

(chat-to-player this-any-enemy "Je sais que vous autres, les Goths, êtes nos ennemis !")

(disable-self)

)

Dans cet exemple, l'information player-civ recherche parmi tous les ennemis ceux qui sont Goths. Si un ennemi de cette civilisation est trouvé, la règle se déclenche. En même temps, le résultat du joker recherché est stocké dans this-any-ennemy. L'action chat-to-player est exécutée et utilise la variable this-any-ennemy pour envoyer le message approprié à l'ennemi connu pour appartenir à la civilisation Goth.

Il est important de se souvenir que la variable a une portée limitée à la règle. Cela signifie qu'une fois que la règle a été exécutée, la variable n'est plus valide. Par exemple, si la règle suivante se trouve derrière la règle définie plus haut, le message "Je n'aime pas les Goths !" ne sera pas envoyé.

(defrule

(true)

=>

(chat-to-player this-any-enemy "Je n'aime pas les Goths") ;

 Ne sera jamais envoyé car this-any-ennemy n'est plus valable sorti de la règle précédente.

(disable-self)

)

Les timers (minuteurs) et leur utilisation

Les timers fournissent un mécanisme pour déclencher une ou plusieurs règles après un certain temps. Les timers ont une portée limitée au JGO. Chaque JGO possède 10 timers.

Exemple 1 :

Voici une manière de traiter une demande de tribut en utilisant les timers. Après 10 minutes de jeu, le JGO demande un tribut et attend 5 minutes pour l'obtenir.

; Après 10 minutes de jeu, demander un tribut sous 5 minutes

(defrule

(game-time greater-than 600) ; 10 minutes = 600 secondes

=>

(chat-to-player 1 "Donne moi 500 unités d'or dans les 5 prochaine minutes.") ; Adresser le message au joueur concerné

(clear-tribute-memory 1 gold) ; Remettre à zéro la compteur de tribut d'or versé par le joueur 1

(enable-timer 1 300) ; Activer le timer N° 1 dans 5 minutes = 300 secondes

(disable-self) ; Désactiver cette règle

)

; Si le tribut n'a pas été reçu à temps, considérer le joueur 1 comme un ennemi.

(defrule

(timer-triggered 1) ; si le timer N° 1 est déclenché (c'est-à-dire si les 5 minutes sont écoulées)

=>

(disable-timer 1) ; Désactiver le timer N° 1

(chat-to-player 1 "Le temps est écoulé. Tu es désormais mon ennemi.") ; Informer le joueur 1 de la nouvelle stratégie diplomatique à son égard

(set-stance 1 enemy) ; Considérer le joueur 1 comme un ennemi

)

; Si le tribut est versé à temps

(defrule

(players-tribute-memory 1 gold greater-or-equal 500) ; Vérifier que le joueur 1 a versé son tribut

=>

(disable-timer 1) ; Désactiver le timer N° 1

(clear-tribute-memory 1 gold) ; Remettre à zéro la compteur de tribut d'or versé par le joueur 1

(chat-to-player 1 "Merci bien mon brave") ; Remercier le joueur 1

)

Exemple 2

Voici un exemple encore meilleur qui utilise 2 timers. Toutes les 15 minutes durant la partie, le JGO demande un tibut et attend 5 minutes pour l'obtenir.

; Planifier la première fois le timer à 15 minutes

(defrule

(true)

=>

(enable-timer 2 900) ; Activer le timer 2 après 15 minutes = 900 secondes

(disable-self) ; Désactiver cette règle

)

; Toutes les 15 minutes demander un tribut et laisser 5 minutes au joueur cible pour apporter le tribut

(defrule

(timer-triggered 2) ; Si le timer 2 est actif alors

=>

(disable-timer 2) ; Désactiver le timer 2

(enable-timer 2 900) ; Réactiver le timer 2 dans 15 minutes

(chat-to-player 1 "Donne moi 500 unités d'or dans 5 minutes.") ; Informer le joueur 1 qu'il doit verser un tribut dans les 5 prochaines minutes

(clear-tribute-memory 1 gold) ; Remettre à zéro le compteur de tribut d'or du joueur 1

(enable-timer 1 300) ; Activer le timer 1 dans 5 minutes = 300 secondes

)

; Si le tribut n'a pas été versé par le joueur 1 dans les temps, changer la politique diplomatique envers ce joueur.

; Il est inutile alors de redemander au joueur de verser un tribut

(defrule

(timer-triggered 1) ; si le timer 1 est actif alors cela signifie que les 5 minutes sont écoulées

=>

(disable-timer 1) ; désactiver le timer 1

(disable-timer 2) ; désactiver le timer 2 (inutile de redemander un tribut)

(chat-to-player 1 "Le temps est écoulé, nous sommes ennemis maintenant.") ; Avertir le joueur 1 du changement de diplomatie à son égard

(set-stance 1 enemy) ; Déclarer que le joueur 1 est un ennemi

)

; Si le tribut a été versé dans les temps

(defrule

(players-tribute-memory 1 gold greater-or-equal 500) ; Vérifier que le tribut correspond bien à la somme demandée

=>

(disable-timer 1) ; désactiver le timer 1

(clear-tribute-memory 1 gold) ; Remettre à zéro le compteur de tribut d'or du joueur 1

(chat-to-player 1 "C'est très bien d'obéir à mes ordres.") ; Remercier le joueur 1

)

Les messages d'erreur

Les messages d'erreur sont affichés dans une boîte de dialogue lorsque le jeu commence. Une seule erreur à chaque exécution est affichée.

Formatage des messages d'erreur :

- Joueur concerné

- Nom du fichier

- Numéro de la ligne : code de l'erreur : description de l'erreur.

Pour certaines erreurs, le numéro de la ligne n'est pas une information pertinente et peut être ommise (par exemple lorsque l'ouverture d'un fichier échoue)

Description des codes d'erreur :

ERR2xxx Syntax errors (erreurs de syntaxe)

ERR3xxx Preprocessor errors (erreurs du préprocesseur)

ERR5xxx File errors (erreurs de fichier)

ERR6xxx Memory allocation errors (erreurs d'allocation mémoire)

ERR8xxx Miscellaneous errors (erreurs diverses)

ERR9xxx Undocumented errors (erreurs non documentées)

Les erreurs non documentées sont des gardes fous pour les erreurs qui ne rentrent pas dans le cadre des erreurs envisagées.

Liste des erreurs :

ERR2001: Missing opening parenthesis (Parenthèse ouverte attendue)

ERR2002: Missing keyword (Mot clé attendu)

ERR2003: Invalid keyword (Mot clé non valide)

ERR2004: Missing identifier (Identifiant attendu)

ERR2005: Invalid identifier (Identifiant non valide)

ERR2006: Missing file name (Nom de fichier attendu)

ERR2007: Missing left-hand side (LHS) of the rule (partie gauche d'une règle attendue)

ERR2008: Missing arrow (flèche - symbole => - attendu)

ERR2009: Missing right-hand side (RHS) of the rule (partie droite d'une règle attendu)

ERR2010: Missing closing quote (Double quotes de fin de chaine attendu)

ERR2011: Missing closing parenthesis (Parenthèse fermée attendue)

ERR2012: Constant already defined (Constante déjà définie)

ERR2013: Unexpected end-of-file (Fin de fichier inattendue)

ERR3001: Invalid preprocessor directive: The given directive is not one of the following: #load-if-defined, #load-if-not-defined, #else, #end-if (directive du préprocesseur non valide. La directive n'est pas une de celles-ci : #load-if-defined, #load-if-not-defined, #else, #end-if)

ERR3002: Missing preprocessor symbol: Preprocessor directive is expecting a preprocessor symbol to follow. (Symbole du préprocesseur attendu)

ERR3003: Preprocessor nesting too deep: Preprocessor directives are nested more than 50 levels deep. (Degré d'imbrication du préprocesseur trop important : la limite du degré d'imbrication est 50)

ERR3004: Unexpected #else: Found #else without matching #load-if-... directive. (#else inattendu : #else trouvé en l'absence de la directive #load-if-...)

ERR3005: Unexpected #end-if: Found #end-if without matching #load-if-... directive. (#end-if inattendu : #end-if trouvé en l'absence de la directive #load-if...)

ERR3006: Missing #end-if: End-of-file reached with outstanding #load-if-... directive and no matching #end-if. (#end-if attendu : La fin du fichier a été atteinte alors qu'une directive #load-if-... ne se termine pas par une directive #end-if)

ERR5001: File open failed (Echec à l'ouverture du fichier)

ERR5002: File read failed (Echec à la lecture du fichier)

ERR6001: List full (Liste pleine)

ERR6002: Rule too long (Règle trop longue)

ERR6003: String table full (Table de chaîne pleine)

ERR8001: No rules (Pas de règle)

ERR9000: Undocumented error (Erreur non documentée)

ERR9001: Unexpected error (Erreur inattendue)

Conseils pour un débogage efficace des scripts

Lorsque vous rencontrez une erreur, suivez la méthode suivante :

- Cliquer sur OK pour fermer la boîte de dialogue.

- Sortir du jeu en basculant vers le bureau (utilisez les touches ALT+TAB). Ne pas quitter le jeu.

- Utiliser un éditeur de texte pour modifier le script contenant l'erreur.

- Retourner dans le jeu en basculant de nouveau.

- Utiliser le menu du jeu pour relancer la partie.

Répéter ces étapes jusqu'à ce qu'il n'y ait plus d'erreurs.

Vous pouvez précisez le script IA que vous souhaitez utiliser dans un scenario en sélectionnant son nom dans la section des joueurs. Créer votre propre scenario à partir d'une carte générée aléatoirement vous permettra de tester votre IA sur une carte connue et rendra l'évaluation des performance de votre IA plus facile.

Vous pouvez utiliser la configuration des équipes sur l'écran de paramétrage avant le jeu pour allier votre IA avec d'autres joueurs (humain ou ordinateur) ou la forcer à combattre contre l'IA de AOE2.

Exemples de scripts

La création des paysans

Loger les unités

Répartir les tâches

Si vous pensez que cette rubrique peut être utile et si vous avez des exemples précis que vous souhaiteriez voir ici alors écrivez moi.

 1) La création des paysans :

Commençons simplement :

(defrule

(can-train villager) ; vérifier si on possède les ressources nécessaires.

=>

(train villager) ; si on les possède, on lance l'entraînement du paysan.

)

Le problème ici, c'est que cette règle va être parsée des centaines de fois durant une partie et que je risque de me retrouver avec des centaines de péons si j'ai les ressources nécessaires. Il faut donc définir la limite du nombre de paysans souhaités.

Si je désire créer 20 péons, la règle sera la suivante :

(defrule

(unit-type-count-total villager < 20) ; vérifier qu'on ne possède pas déjà 20 péons.

(can-train villager) ; vérifier qu'on possède les ressources nécessaires.

=>

(train villager) ; lancer l'entraînement du paysan.

)

Comme le nombre de paysans est une information qui risque d'être utilisée plusieurs fois dans le script, il est conseillé de définir une constante pour le nombre maximum de paysans à créer.

(defconst nombre-max-villageois 20)

(defrule

(unit-type-count-total villager < nombre-max-villageois) ; Utiliser la constante que l'on a défini plus haut.

(can-train villager)

=>

(train villager)

)

2) Loger les unités :

Bon ! C'est super, on sait créer des paysans mais il va falloir les loger ces braves travailleurs.

Si il n'y a pas assez de logement, on ne peux plus créer d'unités. L'objectif est donc de ne pas tomber dans la crise du logement.

(defrule

(housing-headroom < 5) ; Si il reste moins de 5 logements libres.

(population-headroom > 0) ; Si la capacité maximale de logement n'est pas atteinte.

(can-build house) ; Si les ressources nécessaires sont diponibles pour créer une habitation.

=>

(build house) ; Lancer la construction d'une habitation.

)

Avec cet exemple vous maintenez la capacité de logement à son optimum. Vous vous assurez que la création d'unités ne sera pas bloquée à cause du manque d'habitation.

3) Répartir les tâches :

Maintenant que l'on a des paysans, il faudrait peut être les faire travailler.

Là, ça commence à devenir plus marrant. Un paysan, qu'est-ce que ça sait faire ? Ca peut rassembler des ressources, construire des bâtiments ou explorer la carte (ça peut aussi se battre contre les ennemis, mais il est vraiment nul pour ça, inutile d'envoyer les paysans à la boucherie ...). On va donc commencer par répartir les tâches.

; Définir qui fait quoi.

(defrule

(True) ; Toujours exécuter cette règle.

=>

(set-strategic-number sn-percent-civilian-explorers 10) ; On a 10% de la population civile (paysans et bateaux de pêche) dédiée à l'exploration de la carte.

(set-strategic-number sn-percent-civilian-builders 10) ; On a 10% de la population civile dédiée à la construction de bâtiment.

(set-strategic-number sn-percent-civilian-gatherers 80) ; On a 80% de la population civile qui va récolter les ressources.

(disable-self) ; On désactive la règle (pas la peine de la laisser s'exécuter plusieurs fois).

)

; Définir qui ramasse quoi parmi les paysans dédiés à la récolte de ressources

(defrule

(True) ; Toujours exécuter cette règle

=>

(set-strategic-number sn-wood-gatherer-percentage 30) ; 30% des paysans coupent du bois.

(set-strategic-number sn-food-gatherer-percentage 50) ; 50% des paysans récoltent la nourriture.

(set-strategic-number sn-gold-gatherer-percentage 15) ; 15% des paysans sont chercheurs d'or.

(set-strategic-number sn-stone-gatherer-percentage 5) ; 5% des paysans sont mineurs de pierre.

(disable-self) ; On désactive la règle.

)

4) Construire un bâtiment :

Nous allons voir comment demander à un gentil péon de construire un bâtiment.

Par exemple, on va lui demander de construire un moulin lorsqu'il a trouvé de la nourriture (des baies).

(defrule

(building-type-count-total mill == 0) ; Si aucun moulin n'a été construit.

(resource-found food) ; Si on trouve de la nourriture.

(can-build mill) ; Si les ressources nécessaires à la création d'un moulin sont disponibles.

=>

(build mill) ; Lancer la construction d'un moulin.

)

5) Passer de l'âge sombre à l'âge féodal :

Pour passer de l'âge sombre à l'âge féodal, le JGO doit posséder deux bâtiments de l'âge sombre et 500 unités de nourritures. Nous allons tout d'abord créer une vingtaine de paysans, leur demander de récolter de la nourriture puis de construire un moulin et une caserne.

(defconst nombre-max-villageois 20) ; On définit le nombre maximum de villageois.

(defconst nombre-min-villageois 10) ; On définit le nombre minimum de villageois nécessaire au bon déroulement du jeu (ce choix est arbitraire, on aurait très bien pu mettre la valeur 8 ou 15).

(defconst progression 1) ; On définit un objectif, cet objectif est la progression de l'âge sombre vers l'âge féodal. L'objectif passe par plusieurs étapes.

(defconst age-sombre 0) ; La première étape de l'objectif est l'âge sombre (on peut parler d'étape d'initialisation).

(defconst nourriture-stockee 1) ; La seconde étape est le stockage de nourriture.

(defconst batiments-construits 2) ; La troisième étape est la construction de bâtiments.

(defconst age-feodal-atteint 3) ; La dernière étape est le passage à l'âge féodal.

; Phase d'initialisation

(defrule

(current-age == dark-age) ; Si on se trouve à l'âge sombre.

=>

(set-goal progression age-sombre) ; Initiliser l'objectif.

(set-strategic-number sn-percent-civilian-gatherers 100) ; Tous les péons sont dédiés à la récolte de ressources.

(set-strategic-number sn-percent-civilian-explorers 0) ; Aucun péon dédié à l'exploration.

(set-strategic-number sn-percent-civilian-builders 0) ; Aucun péon dédié à la construction.

(set-strategic-number sn-food-gatherer-percentage 75) ; Les péons récoltent de la nourriture en majorité.

(set-strategic-number sn-wood-gatherer-percentage 25) ; Quelques péons scient du bois (pour pouvoir construire les habitations).

(set-strategic-number sn-gold-gatherer-percentage 0) ; Pas de ramassage d'or.

(set-strategic-number sn-stone-gatherer-percentage 0) ; Pas de ramassage de pierre.

(set-escrow-percentage food 25) ; Mettre 25% de la nourriture récoltée en réserve.

; Gestion de l'exploration par la cavalerie d'éclaireur (on commence avec un éclaireur dans un scénario standard).

; Il y a sans doute plus élégant que les 4 lignes qui suivent, mais là je bourrine parce que je n'ai pas envie d'approfondir.

(set-strategic-number sn-minimum-explore-group-size 1)

(set-strategic-number sn-maximum-explore-group-size 1)

(set-strategic-number sn-number-explore-groups 1)

(set-strategic-number sn-total-number-explorers 1)

(disable-self) ; On détactive cette règle car elle ne doit s'exécuter qu'une seule fois.

)

; Phase de création de péons

(defrule

(not (goal progression batiments-construits)) ; Si on n'est pas dans la phase de recherche de l'âge féodal.

(unit-type-count-total villager < nombre-max-villageois) ; Si le nombre de villageois n'a pas atteint son maximum.

(can-train villager) ; Si les ressources nécessaires à la création d'un villageois sont disponibles.

=>

(train villager) ; Lancer l'entraînement d'un péon.

)

; Phase de contrôle de la démographie

(defrule

(unit-type-count-total villager > nombre-min-villageois) ; Si on a atteint la quantité minimum de villageois nécessaire au bon déroulement de notre plan.

=>

(set-escrow-percentage food 75) ; Mettre 75% de la nourriture récoltée en réserve.

(disable-self) ; Désactiver cette règle.

)

; Phase de maintien de la capacité de logement

(defrule

(housing-headroom < 5) ; Si il reste moins de 5 logements libres.

(population-headroom > 0) ; Si la capacité maximale de logement n'est pas atteinte.

(can-build house) ; Si les ressources nécessaires sont diponibles pour créer une habitation.

=>

(build house) ; Lancer la construction d'une habitation.

)

; Phase de contrôle du ramassage de la nourriture

(defrule

(goal progression age-sombre) ; Si on est en phase de ramassage de nourriture.

(escrow-amount food > 500) ; Si la quantité de nourriture mise en réserve est supérieure à 500.

=>

(set-goal progression nourriture-stockee) ; On passe à l'étape suivante.

(set-strategic-number sn-percent-civilian-gatherers 85) ; La majorité des péons sont dédiés à la récolte de ressources.

(set-strategic-number sn-percent-civilian-builders 15) ; Quelques péons sont dédiés à la construction.

(set-strategic-number sn-food-gatherer-percentage 50) ; On diminue la quantité de péons dédiés à la récolte de nourriture.

(set-strategic-number sn-wood-gatherer-percentage 50) ; On augmente la quantité de péons dédiés au sciage du bois.

(set-escrow-percentage food 0) ; On ne met plus de nourriture en réserve.

)

; Phase de contrôle de la construction des bâtiments

(defrule

(goal progression nourriture-stockee) ; Si la phase de stockage de nourriture est terminée.

(building-type-count-total mill == 0) ; Si on ne possède pas de moulin.

(can-build mill) ; Si les ressources nécessaires à la construction d'un moulin (à savoir 100 unités de bois) sont disponibles.

=>

(build mill) ; Lancer la construction d'un moulin.

)

(defrule

(goal progression nourriture-stockee) ; Si la phase de stockage de nourriture est terminée.

(building-type-count-total barracks == 0) ; Si on ne possède pas de caserne.

(can-build barracks) ; Si les ressources nécessaires à la construction d'une caserne (à savoir 175 unités de bois) sont disponibles.

=>

(build barracks) ; Lancer la construction d'une caserne.

)

(defrule

(goal progression nourriture-stockee) ; Si la phase de stockage de nourriture est terminée.

(building-type-count-total mill > 0) ; Si on possède au moins un moulin.

(building-type-count-total barracks > 0) ; Si on possède au moins une caserne.

=>

(set-goal progression batiments-construits) ; Passer à l'étape suivante.

)

; Lancement de la recherche de l'âge féodal

(defrule

(goal progression batiments-construits) ; Si les bâtiments sont construits.

=>

(release-escrow food) ; Libérer les ressources de nourriture mises en réserve.

(disable-self) ; Désactiver cette règle.

)

(defrule

(goal progression batiments-construits) ; Si les batiments sont construits.

=>

(research feudal-age) ; Passer a l'age suivant.

)

; Vérifier que l'on est bien à l'âge féodal

(defrule

(goal progression batiments-construits) ; Si les bâtiments ont été construits.

(current-age == feudal-age) ; Si on est à l'âge féodal.

=>

(set-goal progression age-feodal-atteint) ; On a atteint notre objectif final.

)

Glossaire

AOE2 : Age Of Empire II

IA : Intelligence Artificielle

JGO : Joueur Géré par l'Ordinateur

NS : Nombre Stratégique

Ressources : Ensemble de matériaux permettant à une civilisation d'évoluer, c'est-à-dire le bois, la nourriture, la pierre et l'or.

� INCLUDEPICTURE "D:\\Site Aoe II de APAD\\Image\\Temple.jpg" * MERGEFORMATINET ���

Le 19/09/2000 à 21:48

Page 3/47

