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            Chapitre 20

DYNAMIQUE DES SYSTÈMES DE DEUX POINTS MATÉRIELS

20‑1 Éléments cinétiques d'un système de points matériels


On considère un système formé de deux points matériels A1, de masse m1, et A2, de masse m2, la masse du système est M = m1 + m2. Les masses sont bien entendu constantes.


Les définitions et les résultats qui suivent se généralisent à tout ensemble de points matériels.

20-1-1 Centre de masse (ou centre d'inertie) du système


Par définition, le centre de masse est le point G tel que 
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O étant un point quelconque, on en déduit : 
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 et pour une coordonnée x de G sur un axe Ox :
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 (idem pour y ou z).


En dérivant par rapport à la date, et en choisissant O fixe dans le référentiel considéré, on obtient : 
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20-1-2 Travail du poids du système


Si O est fixe dans le référentiel considéré  et si le champ de pesanteur 
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est uniforme, le travail élémentaire du poids du système est  :
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La puissance correspondante est donc 
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Tout se passe donc comme si le poids du système était une force unique appliquée en G.


20-1-3 Résultante cinétique (ou quantité de mouvement) du système


C'est par définition la somme des quantités de mouvement des deux points matériels dans le référentiel considéré : 
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C'est donc encore la quantité de mouvement d'un point matériel fictif qui aurait pour masse la masse totale du système et qui coïnciderait avec G à chaque instant.


20-1-4 Moment cinétique du système en un point, moment cinétique par rapport à un axe


C'est par définition la somme des moments cinétiques des deux points du système au point considéré dans le référentiel considéré : 
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En un autre point P : 
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Le moment cinétique par rapport à un axe ( orienté par le vecteur unitaire 
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u

est la projection sur cet axe du moment cinétique en en un point de cet axe. Si P
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Si O est un autre point de (, on a bien 
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20-1-5 Énergie cinétique du système

C'est par définition la somme des énergies cinétiques des deux points du système dans le référentiel considéré : 
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20-2 Référentiel barycentrique du système, théorèmes de Kœnig


Les définitions et les résultats qui suivent se généralisent à tout ensemble de points matériels.

20-2-1 Définition du référentiel barycentrique

Le référentiel barycentrique du système est le référentiel où le centre de masse du système est fixe et qui est en translation par rapport à un référentiel galiléen.

Il est donc en translation par rapport à tout référentiel galiléen.

On le note souvent R* et il est défini par les axes Gx, Gy et Gz parallèles à ceux d'un référentiel galiléen, par exemple à ceux du référentiel de Copernic.

Le référentiel barycentrique est donc galiléen si et seulement si G a un mouvement rectiligne et uniforme par rapport à un référentiel galiléen.

20-2-2 Propriétés du référentiel barycentrique

On notera avec * les vitesses, accélérations, résultante cinétique et moments cinétiques dans le référentiel barycentrique R*.


[image: image21.wmf]*

v

M

*

v

m

*

v

m

*

p

G

2

2

1

1

®

®

®

®

=

+

=

 mais G est fixe dans R* donc la quantité de mouvement du système  dans son référentiel barycentrique est nulle : 
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 donc le moment cinétique du système est le même en tout point dans le référentiel barycentrique. On le nomme "moment cinétique barycentrique" et on le note 
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Entre les vitesses dans R*, on a la relation 
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. L'énergie cinétique dans R* est donc : 
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, c'est "l'énergie cinétique barycentrique".

20-2-3 Théorèmes de Kœnig

Soit un référentiel R1 en translation par rapport à un référentiel galiléen. R* est donc en translation par rapport à R1 et R1 est galiléen si et seulement si sa translation par rapport à un référentiel galiléen est rectiligne et uniforme.

Soit 
[image: image31.wmf]®
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la vitesse de G dans R1, c'est aussi la vitesse d'entraînement de R* par rapport à R1.  
Le moment cinétique en G dans R1 est donc
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En un point P quelconque, dans R1, le moment cinétique est 
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 d'où le premier théorème de Kœnig : 
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 dans tout référentiel en translation par rapport à un référentiel galiléen.

Dans R1, 
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 d'où le second théorème de Kœnig : 
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 dans tout référentiel en translation par rapport à un référentiel galiléen. 

20-3 Forces extérieures, forces intérieures à un système de points matériels


20-3-1 Définitions

Les forces subies par les points  matériels d'un système sont de deux types :


Les forces intérieures sont exercées par des points matériels du système.


Les forces extérieures sont exercées par des objets n'appartenant pas au système.


Si des forces d'inertie doivent être prises en compte elles sont assimilées à des forces extérieures.


Le principe des interactions (troisième loi de Newton) implique qu'à toute force intérieure exercée par le point A1 sur le point A2 du système correspond une force intérieure opposée et de même droite d'action A1A2 exercée par A2 sur A1.


20-3-2 Résultante des forces, moment résultant des forces en un point


La résultante des forces agissant sur les points matériels d'un système est la somme des vecteurs correspondant à ces forces.


Si 
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sont les forces totales agissant sur A1 et A2 (sommes de forces intérieures, extérieures et d'inertie si le référentiel n'est pas galiléen), la résultante des forces pour le système est 
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Mais les forces intérieures totales subies par A1 et A2 sont opposées : 
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Le moment résultant des forces en P est pour le système : 
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Le moment résultant en P des forces intérieures est 
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 mais d'après la troisième loi de Newton, 
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La résultante des forces intérieures et le moment résultant des forces intérieures en tout point  sont nuls.

20-3-3 Puissance des forces agissant sur le système


La puissance de la force d'inertie de Coriolis agissant sur un point quelconque Aj du système est 
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 (un produit mixte est nul si deux des vecteurs sont //).


La puissance totale des forces d'inertie de Coriolis est nulle.

Pour un solide (système indéformable), la puissance des forces intérieures est  :
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 d'après la troisième loi de Newton et 
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 mais la distance A1A2 est constante pour un solide donc 
[image: image59.wmf]0

Int

=

P

. La puissance totale des forces intérieures à un solide est nulle.


Dans le cas d'un système déformable, la puissance des forces intérieures n'est pas nulle, 
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 donc la puissance des forces intérieures est la même dans tous les référentiels. 

On peut donc la calculer dans un référentiel R1 où A1 est fixe ou dans un référentiel R2 où A2 est fixe. Dans R1  
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20-3-4 Moment d'une force par rapport à un axe, moment résultant par rapport à un axe


Le moment d'une force 
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 par rapport à un axe ( orienté par le vecteur unitaire 
[image: image64.wmf]®

u

est la projection sur cet axe du moment de cette force en en un point de cet axe. Si P
[image: image65.wmf]Î

 ( :

 
[image: image66.wmf]®

®

¾

®

¾

®

®

D

÷

÷

ø

ö

ç

ç

è

æ

=

G

=

G

Ù

u

f

PA

u

.

.

P

.


Si O est un autre point de (, on a bien 
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On voit donc que  si la droite d'action de 
[image: image70.wmf])

f

,

A

(

®

 coupe l'axe ( ou est parallèle à l'axe (, 
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Si la droite d'action de 
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[image: image1.wmf]®

¾

®

¾

¾

®

¾

=

+

0

GA

m

GA

m

2

2

1

1

 


Soit O le point d'intersection du plan 
[image: image73.wmf]^

Δ, contenant la droite d'action de 
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Si la force tend à faire tourner dans le sens positif autour de ( alors ( = 1, sinon ( = –1.


La distance orthogonale d = OH de l'axe ( à la droite d'action de la force est le bras de levier de la force.


Le moment résultant des forces agissant sur le système par rapport à (, si P 
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20-4 Les théorèmes de la dynamique pour les systèmes de points matériels


On les écrira ici pour des systèmes de deux points, mais ces théorèmes s'appliquent quel que soit le nombre de points matériels.


20-4-1 Théorème de la résultante cinétique, théorème du centre de masse


Pour chaque point matériel, on peut appliquer la deuxième loi de Newton (en tenant compte des forces d'inertie si le référentiel utilisé n'est pas galiléen : 
[image: image81.wmf]®

®

=

1

1

f

dt

p

d

 et 
[image: image82.wmf]®

®

=

2

2

f

dt

p

d

, en additionnant membre à membre on obtient : 


Théorème de la résultante cinétique : 
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Théorème du centre d'inertie : 
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Le mouvement du centre d'inertie du système est celui d'un point matériel fictif qui serait soumis à la somme des forces extérieures et où serait concentrée toute la masse du système. 


20-4-2 Théorème du moment cinétique en un point
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Ce résultat se simplifie si 
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 et en particulier si P est le point G ou si P est fixe dans le référentiel considéré.


Théorème du moment cinétique : 
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 si P est fixe ou si P est le point G (ou si 
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20-4-3 Théorème du moment cinétique dans le référentiel barycentrique


Dans le référentiel barycentrique le moment cinétique est le même en tout point (moment cinétique barycentrique) donc, le théorème du moment cinétique s'appliquant en G, on peut écrire : 
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20-4-4 Théorème du moment cinétique par rapport à un axe

Si l'axe ( de vecteur unitaire 
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 est fixe et passe par P, ou s'il passe par G, en prenant alors P en G, on a 
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20-4-5 Théorème de l'énergie cinétique


Le théorème de l'énergie cinétique  s'applique à chacun des points matériels constituant le système :  
[image: image99.wmf]1
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: puissance de la force totale subie par A2. En ajoutant membre à membre on obtient :


Théorème de l'énergie cinétique : 
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Dans le cas général, il faut prendre en compte les forces intérieures et la force d'inertie d'entraînement mais pas la force d'inertie complémentaire car sa puissance est nulle.


Si le système est indéformable (solide) : 
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20-4-6 Énergie potentielle interne du système

Si les forces intérieures au système 
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 sont conservatives (interaction gravitationnelle ou électrique...) le travail des forces intérieures est égal à la diminution de l'énergie potentielle interne du système : (WInt = – dEpInt . 
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On a vu que dans R1 où A1 est fixe 
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 et dans R2 où A2 est fixe 
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L'énergie potentielle interne se confond avec l'énergie potentielle de A2 dans un référentiel où A1 est fixe ou avec l'énergie potentielle de A1 dans un référentiel où A2 est fixe.


Si une force extérieure est conservative, on dira qu'elle dérive d'une énergie potentielle externe.


20-4-7 Théorème de l'énergie mécanique


Le théorème de l'énergie cinétique peut s'écrire, en distinguant les forces non conservatives des forces conservatives : dEc = (WIntNC + (WIntC + (WExtNC + (WExtC soit dEc = (WNC – dEpInt – dEpExt.


On définit l'énergie mécanique par E = Ec + EpInt + EpExt .


Théorème de l'énergie mécanique :
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On peut aussi parler d'énergie mécanique interne : EInt = Ec + EpInt, on a alors (E = WIntNC + WExt ...

20-5 Système isolé de deux points matériels en interaction conservative, mobile équivalent

20-5-1 Conservation de la quantité de mouvement


Le système est isolé si les forces extérieures sont absentes ou si leur résultante est nulle et leur moment résultant nul.


On remarque que si la résultante est nulle il suffit que le moment résultant soit nul en un point pour qu'il le soit partout.


Dans un référentiel galiléen Rg : 
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 est constante.


Dans un référentiel galiléen la quantité de mouvement est constante et G a un mouvement rectiligne uniforme.


Le référentiel barycentrique est donc en translation rectiligne uniforme par rapport au référentiel Rg, avec une vitesse d'entraînement 
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. Le référentiel barycentrique est galiléen.

20-5-2 Conservation du moment cinétique barycentrique


On a vu que 
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 et, le référentiel barycentrique étant galiléen, il n'y a pas de forces d'inertie à prendre en compte. Le système étant isolé, 
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Le moment cinétique barycentrique est constant.


20-5-3 Conservation de l'énergie mécanique barycentrique


Les seules forces à prendre en compte sont les forces d'interaction conservative entre les deux points matériels A1 et A2 qui dérivent de l'énergie potentielle Ep = EpInt = Ep*  indépendante du référentiel puisque le travail des forces intérieures ne dépend pas du référentiel. 

Dans le référentiel barycentrique il n'y a pas à prendre en compte de forces d'inertie (celles-ci sont souvent non conservatives) puisque le référentiel barycentrique est galiléen. 

L'absence de forces non conservatives implique que l'énergie mécanique est constante dans le référentiel barycentrique : 
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20-5-4 Réduction du problème à deux corps à un problème à un corps


20-5-4-1 Mobile équivalent (ou mobile réduit)
En l'absence de forces extérieures (système isolé), A2 n'est soumis qu'à la force intérieure 
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Dans un référentiel galiléen (barycentrique par exemple), on a donc 
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 (2) en combinant ces deux équations : m1 (2) – m2 (1) on obtient :
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  soit encore : 
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Le mobile équivalent est par définition le point A tel que 
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 appelée masse réduite, soumis à la force 
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En notant les vecteurs positions dans R* 
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pour le mobile équivalent, on a bien 
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 pour le mobile équivalent dans le référentiel barycentrique (galiléen).

On peut donc obtenir par intégration de cette relation le mouvement du mobile équivalent dans R*.


20-5-4-2 Homothétie des trajectoires dans le référentiel barycentrique

G étant le centre de masse : 
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Les trajectoires de A2 et de A1 dans le référentiel barycentrique sont donc homothétiques de celle du mobile équivalent dans des homothéties de centre G et de rapports 
[image: image139.wmf]2
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Les relations d'homothétie pour les vitesses et pour les accélérations dans le référentiel barycentrique sont obtenues par dérivation par rapport au temps : 
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Par exemple, avec une trajectoire elliptique pour le mobile équivalent et m2 = 2 m1 :

20-5-4-3 Constantes du mouvement du mobile équivalent


Le mobile équivalent est donc soumis à une force dont la droite d'action passe par G, fixe dans R*; c'est un mouvement à accélération centrale donc un mouvement plan qui suit la loi des aires...


Le moment cinétique barycentrique du système est 
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 : Le moment cinétique barycentrique est égal à celui du mobile  équivalent..


L'énergie cinétique barycentrique du système est 
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 : L'énergie cinétique barycentrique du système est égale à celle  du mobile équivalent.


La puissance des forces intérieures au système dans le référentiel barycentrique est 
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, c'est la puissance de la force appliquée au mobile équivalent. La force étant radiale (W* = f2r dr  est la diminution de l'énergie potentielle (interne) du système, identique à la diminution de l'énergie potentielle du mobile équivalent dans le référentiel barycentrique

Donc l'énergie potentielle d'interaction du système (indépendante du référentiel) est l'énergie potentielle barycentrique du mobile équivalent. Elle ne dépend que de r. 
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L'énergie mécanique barycentrique du système est donc celle du mobile équivalent : 
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Comme on l'a vu précédemment, E* et 
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 sont des constantes du mouvement.


20-5-4-4 Cas où l'une des masses est très supérieure à l'autre

Si m1 >> m2 alors on peut faire les approximations µ = m2 et G est confondu avec A1 et le mobile équivalent est confondu avec A2. 

C'est le cas si l'on étudie, en négligeant l'attraction par les autres astres, l'interaction entre un satellite artificiel et la Terre ou l'interaction du Soleil avec la Terre. Par contre, pour étudier le mouvement de Jupiter, la planète la plus massive,  autour du Soleil, ou, à fortiori, pour un système d'étoiles double, on ne peut pas confondre G avec le centre de l'un des astres.
20‑5-4‑5 Mouvement du centre attracteur

Si A1 (m1) et A2 (m2 < m1) forment un système isolé en interaction gravitationnelle, le mouvement du mobile équivalent A dans le référentiel barycentrique est celui d'une masse 
[image: image154.wmf]2

1

2

1

m

m

m

m

µ

+

=

de vecteur position 
[image: image155.wmf]®

¾

®

¾

¾

®

¾

=

=

r

2

1

u

r

A

A

GA

 soumise a une force 
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Tout se passe dans le référentiel barycentrique comme si le mobile équivalent A, de masse µ était attiré par une masse m1 + m2  placée en G.

Le mobile équivalent décrit une conique dans le référentiel barycentrique et A1 et A2 décrivent des coniques homothétiques...

Mais 
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 donc ce mouvement est donc aussi celui de A2 dans le référentiel d'axes parallèles à ceux du référentiel barycentrique (galiléen) d'origine A1.

Le mouvement de A2 dans le référentiel d'origine A1 d'axes parallèles à ceux d'un référentiel galiléen, est donc celui qu'aurait une masse µ attirée par une masse m1 + m2 placée en A1, si 1e référentiel était galiléen,

Par exemple, pour le Soleil (S de masse mS et Jupiter (J de masse mJ), le référentiel barycentrique est pratiquement le référentiel de Kepler pour lequel l’origine des axes est le centre de masse du système solaire  (les autres planètes ayant des masses bien plus petites, G est pratiquement le centre de masse du système solaire). Le mouvement de Jupiter dans le référentiel de Copernic, où c'est le centre du Soleil qui est fixe, est le même que celui du mobile équivalent au système Soleil - Jupiter attiré par une masse mS + mJ  placée en S.


La trajectoire dans le référentiel de Copernic est donc une ellipse dont S est l'un des foyers. Son demi  grand axe, a, dans ce référentiel sera donc donné par la loi de Kepler : 
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Dans le cas de la planète la plus massive, Jupiter, la correction est encore faible car 
[image: image159.wmf]1047
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La correction est bien entendu indispensable dans le cas d'un système du type "étoile double".
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