

Support de cours		Formation ISN 2014 – module 5		22/05/2014		Centre de ressources informatiques - UCO	

Centre de Ressources Informatiques

Table des matières

Préambule	1
Installation de l’environnement de travail	1
Le dossier de la formation	1
Un éditeur html, css, javascript, sql, php : Notepad++	3
Description	3
Installation et lancement	3
Les fonctions et touches de raccourcis à connaître pour développer plus rapidement	4
Le plugin Emmett (niveau avancé)	5
Un navigateur web	6
Le choix de Google Chrome	6
Erreur à l’UCO : page inaccessible	6
Présentation des outils de développement	6
Quelques extensions utiles	7
Qu’est-ce qu’un L/WAMP ?	7
Description des principales briques d’un LAMP ou WAMP	7
UniServer	8
Configuration du serveur Web Apache	8
Accès à votre serveur WEB Apache	8
Accès aux autres serveurs WEB Apache	8
Configuration avancée d’Apache (niveau avancé)	8
Le HTML	10
Présentation	10
Un langage de description	11
Les principales balises	12
Flux et boîtes	13
Boîte de type bloc en flux normal	13
Boîte de type en-ligne	13
Les attributs	14
Les chemins	15
Application à notre exemple	15
Les feuilles de style (CSS)	18
Présentation	18
Principe	18
Les sélecteurs	19
Les propriétés	21
Les unités de mesure et les couleurs	22
Notion d’héritage	23
Notion de surcharge	23
Application à notre exemple	24
Comportement de type bloc ou de type en ligne	25
Les images	27
Le colonage	28
Conclusion	30
Le Javascript	30
Présentation	30
A quoi ressemble un script ?	31
Application à notre exemple	32
Les nœuds du DOM	33
Introduction aux fonctions	35
Introduction à jQuery	37
Les bases de données	39
Généralités	39
Le langage SQL	40
Le système de gestion de base de données MySQL	41
Présentation	41
Démarrage du serveur MySQL	41
PhpMyAdmin	41
Application à notre exemple	42
Test de requêtes	47
Le php	48
Présentation	48
Nommage des pages	49
Quelques règles de syntaxe	51
Application à notre exemple	52
Affichage de la liste des billets	52
Affichage de la liste des catégories	57
Insertion de données	59
Comment emporter mes travaux ?	68

[bookmark: _Toc386200648]Préambule

Cette formation s’articulera autour de la construction très simple d’une ébauche de blog sous un environnement Windows. Bien que des outils très puissants comme WordPress existent à cette fin, cet exemple nous permettra d’aborder concrètement toutes les couches qui constituent une application web.
Le sujet et toutes les notions qu’il développe sont impossibles à traiter dans un laps de temps si court, ainsi nous irons à chaque fois à l’essentiel en faisant évidemment l’impasse sur bien des choses. Les url citées tout au long de ce document vous permettront d’approfondir ou d’avancer sur des notions que nous n’aurons qu’effleurées ou même écartées.
Le support fait référence à divers endroits à la lettre de lecteur D:. Evidemment, à chaque fois remplacez-là par la lettre que vous aurez choisie durant l’installation des ressources.
Les chapitres ou zones de texte qui apparaissent de cette façon traitent de points de « niveau avancé ». Vous pouvez les passer sans que cela impacte le déroulement de la formation ou les explorer si vous avez déjà atteint un niveau de compréhension assez élevé.
Les paragraphes apparaissant de cette manière sont des citations provenant d’autres sites (la source étant mentionnée en dessous).
[bookmark: _Toc386200649]Installation de l’environnement de travail
[bookmark: _Toc386200650]Le dossier de la formation
Si vous possédez déjà ces 3 briques logicielles sur votre ordinateur ou souhaitez changer l’une d’entre elles : utiliser un autre navigateur, un autre éditeur, un autre WAMP (EasyPhp, Wamp, Xampp, etc), localisez la racine web de votre environnement et passez directement au chapitre « Le Html », page 11.
Avant toute chose vous devez récupérer le dossier qui contient tous les applicatifs décrits dans ce document. A savoir :
· Un navigateur portable : Google Chrome
· Un éditeur de code portable : Notepad++
· Un environnement « web » complet portable : UniServer qui contient :
· Un serveur web Apache
· Un module PHP
· Un serveur MySQL
· Une interface de gestion (en PHP) pour MySQL : phpMyAdmin
Une fois décompressé, ce dossier – bien que volumineux, ≈ 300 Mo - pourra être copié, transporté et même exécuté depuis n’importe quel emplacement ou périphérique, comme une clé USB.
· Rendez-vous sur mon « cours » ISN sur la plateforme Chamilo de l’UCO :
http://lms.uco.fr/chamilo/courses/ISNMODULE5
· Suivez les instructions pour télécharger et décompresser les ressources
Si tout se passe bien, à la fin de l’installation, vous pouvez cliquer sur Fermer l’installateur et lancer le serveur.
Cependant, vérifiez que vous avez l’arborescence suivante (remplacez D: par la lettre de lecteur que vous avez choisi lors de l’installation) :
D:
 +-- FORMATION_ISN
 +-- GoogleChromePortable
 +-- notepad++
 +-- support
 -- support_cours_ISN_mai_2014.docx
 +-- UniServer
 +-- www
 +-- corrige
 +-- etapes
 +-- …
 +-- formation
 +-- css
 +-- img
 +-- js
 -- index.html

Si UniServer s’est lancé vous devriez avoir la fenêtre ci-dessous. Si ce n’est pas le cas, vous pouvez lancer UniServer à l’aide du raccourci normalement présent sur le bureau (créé lors de l’installation) : Lancer serveur WEB (1).
 [image:]
Démarrer maintenant le serveur web à proprement parlé (Apache) en cliquant sur démarrer Apache (2).
Voilà, vous pouvez réduire cette fenêtre (3) ; mais ne la fermer surtout pas, auquel cas vous couperiez Apache et donc l’accès à notre serveur.
Nous démarrerons le serveur MySQL plus loin dans la formation mais si vous avez également cliqué sur démarrer MySQL ou encore sur démarrer les deux, cela n’aura aucune incidence sur le début de la formation.
Si jamais vous fermez par erreur UniServer et donc le serveur Apache, vous pouvez le relancer en cliquant sur le raccourci présent sur le bureau Lancer serveur WEB ou encore en exécutant d:\FORMATION_ISN\UniServer\demarrer.exe puis Démarrer Apache.
[bookmark: _Toc386200651]Un éditeur html, css, javascript, sql, php : Notepad++
[bookmark: _Toc386200652]Description
Notepad++ est un éditeur de texte générique codé en C++, qui intègre la coloration syntaxique de code source pour les langages et fichiers C, C++, Java, C#, XML, HTML, PHP, JavaScript, makefile, art ASCII, doxygen, .bat, MS fichier ini, ASP, Visual Basic/VBScript, SQL, Objective-C, CSS, Pascal, Perl, Python, R, MATLAB, Lua, TCL, Assembleur, Ruby, Lisp, Scheme, Properties, Diff, Smalltalk, PostScript et VHDL ainsi que pour tout autre langage informatique, car ce logiciel propose la possibilité de créer ses propres colorations syntaxiques pour un langage quelconque.
Ce logiciel, basé sur la composante Scintilla, a pour but de fournir un éditeur léger (aussi bien au niveau de la taille du code compilé que des ressources occupées durant l’exécution) et efficace. Il est également une alternative au bloc-notes de Windows (d’où le nom). Le projet est sous licence GPL.
Il ne bloque pas le fichier en cours d'édition et détecte toute modification apportée à celui-ci par un autre programme (il propose de le recharger).
[Source : Wikipédia => http://fr.wikipedia.org/wiki/Notepad%2B%2B]
Site Web et téléchargement : http://notepad-plus-plus.org/fr/
Cet éditeur léger se montre également très puissant dans sa capacité à recevoir des « plugins » afin de lui ajouter de nouvelles fonctionnalités.
[bookmark: _Toc386200653]Installation et lancement
Nous utiliserons durant cette formation la version portable du logiciel (que vous pouvez lancer par le raccourci présent sur le bureau ou directement dans D:\FORMATION_ISN\notepad++Portable\Notepad++Portable.exe), cependant, rien ne vous empêche d’installer sur votre poste une version « classique » du logiciel en vous rendant sur le site de l’éditeur (voir l’adresse plus haut).
Retenez que le choix de l’outil vous appartient puisque tout au long de cette formation, nous ne ferons qu’éditer du texte brut, ainsi, dans l’absolu, même le notepad de Windows pourrait suffire.
[bookmark: _Toc386200654]Les fonctions et touches de raccourcis à connaître pour développer plus rapidement
A savoir :
· Notion de bloc : l’éditeur met en lumière les « blocs » en colorant le début et la fin d’un bloc ; dans un fichier html par exemple un <div> et son </div> seront ainsi colorés.
Dans un document php, le début et la fin d’un bloc « if » par exemple.
· La coloration syntaxique : tous les éléments du langage détecté sont colorés (bleu et rouge principalement)
Touches de raccourcis indispensables :
· La recherche et le remplacement : Ctrl + F et Ctrl + H .
· La complétion de fonction : Ctrl + Espace .
· Augmenter l’indentation : Tab .
· Réduire l’indentation : Shift + Tab .
· Commenter/dé commenter une ligne : Ctrl + Q .
· Commenter un bloc : Ctrl + Shift + Q .
· Dupliquer une ligne : Ctrl + D .
· Aller à la ligne x : Ctrl + G .
· Sauvegarder le document en cours : Ctrl + S .
· Annuler la dernière action : Ctrl + Z .
· Rappeler la dernière action annulée : Ctrl + Y .
Si vous utilisez la version portable fournie dans le package de la formation, tout est paramétré. Si jamais vous utilisez une version classique, il vous faudra faire ceci :
	Pour activer l’auto-complétion de fonction, se rendre dans Paramétrage > Préférences > Sauvegarde/Autocomplétion.
Pour activer « l’auto-fermeture » des balises HTML et des accolades/parenthèses : Compléments > plugin manager > show plugin manager puis chercher TextFX Characters et l’installer. Faire de même avec le plugin Emmett.

Attention, si vous vous trouvez à l’UCO, vous devrez auparavant configurer le proxy en vous rendant dans Settings puis en tapant les valeurs :
· Proxy.uco.fr dans le champ Proxy address
· 3128 dans le champ Proxy port
Notepad++ demande un redémarrage, acceptez. Un menu TextFX apparaît alors. Dans ce menu, aller dans TextFX settings et cocher +Autoclose XHTML/HTML <tag> et +Autoclose {([brace
Notre éditeur est désormais prêt pour coder efficacement nos fichiers !

[bookmark: _Toc386200655]Le plugin Emmett (niveau avancé)
	Ce plugin vous permettra de taper du code html plus rapidement. Il est souvent fastidieux d’écrire - en dehors même du contenu textuel - la structure d’un document HTML, c’est-à-dire toutes les balises (et leurs attributs) emboitées les unes dans les autres.
Avec Emmett, vous tapez dans notepad++ :
	· div#page>div.logo+(ul#navigation>li*5>a[href=http://www.uco.fr])+table>tr*2>td*2
· puis faites Ctrl + E .

Vous obtenez alors automatiquement :
<div id="page">
	<div class="logo"></div>
	<ul id="navigation">
		
		
		
		
		
	
	<table>
		<tr>
			<td></td>
			<td></td>
		</tr>
		<tr>
			<td></td>
			<td></td>
		</tr>
	</table>
</div>
Le gain de temps est évidemment inestimable ! Cependant, vous devrez bien maîtriser la notion d’emboitement (parents / enfants) des éléments HTML ainsi que la syntaxe des sélecteurs CSS.
Emmett fonctionne aussi avec les CSS, exemple :
m0 donnera margin :0px ;
Pour en savoir plus :
http://emmet.io/ et http://docs.emmet.io/

[bookmark: _Toc386200656]Un navigateur web
[bookmark: _Toc386200657]Le choix de Google Chrome
A l’heure actuelle ce navigateur est un des plus légers, un des plus rapides et un des plus respectueux des standards du web définis par le W3C (http://www.w3.org/) ce qui en fait un outil de choix, d’autant plus qu’il possède des outils de développements intégrés très puissants absolument essentiels pour le développement web.
Bien entendu, comme pour l’éditeur de code, vous êtes libre de choisir n’importe quel navigateur, tous donneront sensiblement le même résultat. Il faut simplement retenir qu’un navigateur possédant des outils de développement puissants vous fera gagner beaucoup de temps dans l’écriture de vos pages web.
[bookmark: _Toc386200658]Erreur à l’UCO : page inaccessible
Une fois l’environnement de travail installé, Chrome s’est lancé sur l’url : http://localhost/index.html et a généré une erreur.

Sur les réseaux d’entreprise, il arrive souvent que l’accès internet se fasse à travers un Proxy (un serveur qui filtre les pages demandées). Or ce dernier ne trouvera jamais sur le web d’adresse de type localhost ou 127.0.0.1 qui sont réservées aux accès locaux.
Nous devons donc dire au navigateur que pour tous nos accès locaux, il ne faut pas utiliser de proxy !
Pour ce faire, cliquez sur l’icône représentant « 3 gros traits » en haut à droite à côté de la barre d’adresse puis choisissez « paramètres dans le menu ». Vous pouvez également faire Ctrl + T pour ouvrir un nouvel onglet et taper dans la zone d’adresse chrome://settings/browser, cela revient au même.
Ensuite dans la zone de recherche, tapez « proxy » puis cliquez sur le bouton « Modifier les paramètres du proxy ».
Une nouvelle fenêtre s’ouvre, cliquez alors sur le bouton « paramètres réseau » et cochez la case « Ne pas utiliser de serveur proxy pour les adresses locales ».
[bookmark: _Toc386200659]Présentation des outils de développement
L’accès aux outils de développement se fait en pressant la touche F12 .
· L’onglet Elements permet de parcourir la structure HTML de la page WEB en cours.
· Le survol des balises « textuelles » dans la console les met en évidence sur la page en les colorant (ainsi que ses principales propriétés métriques : marges externes, internes, mesures, etc).
· Un clic permet d’accéder à toutes ses propriétés CSS et de les modifier « en direct »
· Un double-clic permet de modifier « en direct » certaines propriétés ou l’élément lui-même.
· L’onglet Resources liste toutes les ressources liées à la page (images, scripts, feuilles de style, cookies, etc) et permet d’en voir et modifier le contenu ou d’en avoir un aperçu pour les images.
· L’onglet Network montre et décrit toutes les requêtes http survenant lors de la manipulation de l’utilisateur : chargement des différentes ressources, pages asynchrones, etc
· L’onglet Scripts montre et permet d’intervenir sur tous les scripts javascript associés à la page.
· L’onglet Console remonte les erreurs en général dont javascript ou les messages de debug
[bookmark: _Toc386200660]Quelques extensions utiles
· ColorZilla : permet d’obtenir le code de n’importe quelle couleur présente sur une page web
· PageRuler : permet de mesurer en pixel une zone de la page
· IE tab : permet de simuler l’aspect d’une page sous IE
· WhatFont : permet de connaître la police utilisée sur une page web
· Resolution Test : tester une page dans différentes résolutions
[bookmark: _Toc386200661]Qu’est-ce qu’un L/WAMP ?
[bookmark: _Toc386200662]Description des principales briques d’un LAMP ou WAMP
L/WAMP est un acronyme désignant un ensemble de logiciels libres permettant de construire des serveurs de sites web. L'acronyme original se réfère aux logiciels suivants :
· Linux ou Windows : le système d’exploitation
· Apache est le serveur web « frontal » : il est « devant » tous les autres et répond directement aux requêtes du client web (navigateur) ;
· MySQL est un système de gestion de bases de données (SGBD). Il permet de stocker et d'organiser des données ;
· le langage de script PHP permet la génération de pages web dynamiques et la communication avec le serveur MySQL.
[Source : Wikipédia => http://fr.wikipedia.org/wiki/LAMP et http://fr.wikipedia.org/wiki/WAMP]
Sous Windows, il existe une multitude de logiciels (Easyphp, Wamp, etc) facilitant l’installation et la configuration des différentes briques d’un WAMP. De notre côté, nous choisirons Uniform Server.
[bookmark: _Toc386200663]UniServer
UniServer n’est pas le plus connu des WAMP mais lorsque l’on cherche un ensemble de petite taille (=130 Mo) pouvant facilement être transporté et exécuté sur une clé USB par exemple et avec les options les plus communes dont l’application de gestion de base de données MySQL, phpMyAdmin on retombe vite sur celui-ci.
[bookmark: _Toc386200664]Configuration du serveur Web Apache
[bookmark: _Toc386200665]Accès à votre serveur WEB Apache
Une fois lancé, Apache est accessible dans le navigateur par http://localhost ou encore http://127.0.0.1 qui correspond à l’adresse IP locale de la carte réseau de l’ordinateur.
Consulter cette page si vous souhaitez en savoir plus : https://fr.wikipedia.org/wiki/Localhost
Dans notre exemple, la racine web du serveur Apache se trouve sur D:\FORMATION_ISN\UniServer\www, c’est-à-dire que toutes les url du type http://localhost/qqchose pointeront vers D:\FORMATION_ISN\UniServer\www\qqchose.
[bookmark: _Toc386200666]Accès aux autres serveurs WEB Apache
Dans le cadre de la formation, vous aurez installé dans la même salle un serveur WEB chacun. Tous ces serveurs seront donc accessibles les uns aux autres par leur adresse IP puisque étant sur le même réseau. Vous serez tous à la fois client (le navigateur) et serveur à la fois.
Exemple (à l’UCO seulement, salle E123) : http://172.1.123.1 dans votre navigateur vous affichera les données du poste 1, http://172.1.123.15 du 15, etc.
[bookmark: _Toc386200667]Configuration avancée d’Apache (niveau avancé)
Si à la fin de l’installation du dossier de formation, page 5, votre serveur web répond sur http://localhost et qu’une page web avec le texte « Le serveur Apache est démarré et fonctionnel » apparaît, vous pouvez passer ce chapitre.
Si vous souhaiter comprendre comment changer localhost en autre chose ou encore changer le répertoire définit comme « racine web », lisez la suite.
	Ce chapitre (comme tous les autres d’ailleurs !) mériterait à lui seul 2 jours pleins que nous n’avons pas, c’est pourquoi nous allons nous contenter de configurer le serveur sans entrer dans les détails et toutes les fonctionnalités d’Apache en utilisant la configuration par défaut.

Pour aller plus loin, voir la documentation officielle ici : http://httpd.apache.org/docs/2.0/fr/

La plupart des programmes provenant du monde Linux se paramètrent ou se configurent dans des fichiers texte possédant l’extension .conf, c’est le cas d’Apache avec le fichier racine_apache/conf/httpd.conf dans lequel on positionne des directives.

Il contient entre autres la définition du serveur Web, les ports utilisés, les modules à charger (php, ssl => gestion du https, etc.), le ou les hôtes virtuels nommés (en quelque sorte les URL de votre serveur comme http://www.monsite.com) ainsi que les éventuelles règles de réécriture d’URL(http://fr.wikipedia.org/wiki/Htaccess#URL_Rewriting). Les lignes commençant par # sont inactives ou commentées.

En fonctionnement « standalone » (autonome), tous les chemins seront écrits de façon relative, nous ne taperons donc pas c:\mon_chemin\mon_dossier mais /mon_chemin/mon_dossier en partant depuis la racine du périphérique, ici D:.

Apache venant du monde linux, on utilise des slaches plutôt que des anti-slaches.

Ouvrons le fichier D:\FORMATION_ISN\UniServer\usr\local\apache2\conf\httpd.conf et rendons-nous :
· à la ligne 35 (Ctrl + G > taper 35) et modifions la directive ServerRoot - qui correspond à la racine parente d’Apache - pour la faire correspondre à notre environnement :

ServerRoot "D :/FORMATION_ISN/UniServer/usr/local/apache2"

· ligne 176 : la directive ServerName va indiquer le nom du serveur. C’est ce nom que nous chercherons à atteindre dans le navigateur pour accéder aux pages web de ce dernier.
Généralement, on garde comme valeur localhost ou encore l’adresse IP locale de la carte réseau : 127.0.0.1.

Dans notre exemple, nous allons plutôt simuler un serveur public de l’internet : choisissons un nom comme par exemple formationisn qui correspondra à l’adresse d’accès de notre serveur.

Notez que nous ne pouvons pas utiliser la syntaxe des urls (www.exemple.fr) que nous connaissons tous puisque réservée aux noms de domaines publics. Toutes les adresses que vous définirez ci-dessous ne seront accessibles qu’à votre ordinateur et ceux de votre réseau local si ces derniers peuvent les résoudre, c’est-à-dire faire correspondre le nom de domaine avec l’adresse ip.

Sous Windows on définit ces correspondances dans le fichier suivant :

c:\windows\system32\drivers\etc\host

et pour que votre serveur web fonctionne, vous devez au moins déclarer votre propre url en la liant à l’adresse IP locale de votre poste (qui est toujours égale à 127.0.0.1 pour tous les ordinateurs du monde) de cette manière :

127.0.0.1	formationisn

Maintenant, si vous voulez accéder au serveur web de votre voisin, ajoutez son url et cette fois ci l’adresse IP de son poste, par exemple :

172.1.123.10	urldemonvoisin	

De cette manière, si votre voisin a défini dans son fichier host :

127.0.0.1	urldemonvoisin	

vous pourrez alors accéder à son serveur web en tapant http://urldemonvoisin/ dans votre navigateur. Attention, si lui aussi a choisi l’url formationisn, vous tomberez forcement sur votre propre serveur et non le sien !

Revenons à notre fichier httpd.conf :

· ligne 183 : la directive DocumentRoot indique la racine des ressources web

DocumentRoot " D:/FORMATION_ISN/UniServer/www"

· ligne 210 : quelques propriétés sont définies pour le dossier parent de la racine des ressources web, c’est-à-dire lui-même. Ecrire :

<Directory " D:/FORMATION_ISN/UniServer/www">

Et laisser l’intérieur de ce bloc inchangé.

Voilà notre serveur web est prêt !

Démarrez ou redémarrer le serveur web (ref. page 2) puis dans le navigateur, tapez l’adresse http://formationisn ou celle que vous avez configuré avec la directive ServerName ; la page index.html du dossier D:\FORMATION_ISN\UniServer\www devrait s’afficher et donc afficher : Le serveur Apache est démarré et fonctionnel !

[bookmark: _Toc386200668]Le HTML
[bookmark: _Toc386200669]Présentation
L’Hypertext Markup Language, généralement abrégé HTML, est le format de données conçu pour représenter les pages web. C’est un langage de balisage qui permet d’écrire de l’hypertexte, d’où son nom. HTML permet également de structurer sémantiquement et de mettre en forme le contenu des pages, d’inclure des ressources multimédias dont des images, des formulaires de saisie, et des éléments programmables tels que des applets. Il permet de créer des documents interopérables avec des équipements très variés de manière conforme aux exigences de l’accessibilité du web. Il est souvent utilisé conjointement avec des langages de programmation (JavaScript) et des formats de présentation (feuilles de style en cascade). HTML est initialement dérivé du Standard Generalized Markup Language (SGML).
[Source : Wikipédia => http://fr.wikipedia.org/wiki/Hypertext_Markup_Language]
[Aller plus loin => http://www.commentcamarche.net/contents/html/]
Un fichier HTML 5 possède une structure de base que voici :
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Titre</title>
 </head>

 <body>

 </body>
</html>
Nous ne nous attarderons pas sur le DOCTYPE et le contenu de <head>, je vous invite à lire cette page pour en savoir plus : http://www.commentcamarche.net/faq/9060-les-balises-dans-la-partie-head
Sachez seulement que leur rôle est essentiel pour le navigateur et pour les moteurs de recherche.
Ainsi pour chaque fichier html (ou même PHP) vierge que vous créerez, vous pourrez coller ce code dedans pour démarrer.
Pour gagner du temps, vous pouvez également utiliser le plugin Emmett et dans un fichier vierge taper « html:5 » puis Ctrl + E , vous obtiendrez alors la même chose.
Ouvrez le fichier d:\FORMATION_ISN\UniServer\www\formation\index.html (qui doit être vierge) dans Notepad++ et écrivez le contenu ci-dessus avec l’une des méthodes proposées.
Sauvegarder le fichier avec Ctrl + S .
[bookmark: _Toc386200670]Un langage de description
Le HTML n'est pas un langage de programmation. Il s'agit d'un langage permettant de décrire la mise en page et la forme d'un contenu rédigé en texte simple.
Une page HTML est ainsi un simple fichier texte contenant des balises (parfois appelées marqueurs ou repères ou tags en anglais) permettant de mettre en forme le texte, les images, etc. »
[Source : Commentcamarche =>http://www.commentcamarche.net/contents/html/htmlbalise.php3]

Pour constituer une page HTML, on dispose donc des balises (une ouvrante et une fermante) les unes à la suite des autres ou en les emboitant. Par exemple, pour un lien, on ouvrira avec <a> et on fermera avec :
texte du lien
Il existe des exceptions pour les éléments qui n’enveloppent pas de texte, les boutons par exemple ou la balise est ouvrante et fermante :
<input type="bouton" value="Valider" />
Ou encore le saut de ligne
, etc.
Par « emboiter », il faut comprendre que le « code » d’un document HTML est hiérarchisé et que toute balise possède un « parent », la balise <html> étant la parente de toutes. Ainsi <body> est emboitée dans <html> et si on place des balises <div> et <p> de cette manière :
<body>
	<div>
		<p>mon texte</p>
	</div>
</body>
On peut alors dire que le paragraphe <p> a comme parent, le bloc <div> qui lui-même a comme parent <body>, etc. A l’inverse, on dit que le paragraphe <p> est un enfant du bloc <div>.
[bookmark: _Toc386200671]Les principales balises
Les balises ont une fonction précise, un sens sémantique, veillez donc – dans la mesure du possible – à utiliser les bonnes balises par rapport à la fonction du texte contenu dans le document.
Par exemple, si vous avez un titre de niveau 1 dans votre document, il est préférable de l’entourer de <h1> et </h1> plutôt que et auquel on appliquerait une police plus grande …
Vous trouverez ci-dessous un lien vers la liste des principales balises HTML et leur sens sémantique lorsqu’elles en ont un ; et <div> par exemple, n’en n’ont pas, on parle de balises génériques :
http://fr.openclassrooms.com/informatique/cours/apprenez-a-creer-votre-site-web-avec-html5-et-css3/memento-1
Et un autre pour une liste plus complète :
http://www.w3.org/community/webed/wiki/HTML/Elements
[bookmark: _Toc386200672]Flux et boîtes
Pour représenter le positionnement des éléments html en flux normal, on peut imaginer le navigateur parcourant (logiquement) la page de code HTML du début à la fin et retranscrivant son contenu au fur et à mesure des balises rencontrées.
Comme dans la lecture d'un texte, il procède verticalement, commençant en « haut » de l'écran pour aller jusqu'en « bas », et horizontalement de gauche à droite, sur la totalité de l'espace disponible et nécessaire en largeur comme en hauteur.
Tous les éléments d'une page HTML se coulent dans des blocs (ou «boîtes») rectangulaires.
[Source : http://openweb.eu.org/articles/initiation_flux]
[bookmark: _Toc386200673]Boîte de type bloc en flux normal
Par défaut, les boîtes de type bloc seront affichées dans une succession verticale.
Le navigateur traite successivement les deux éléments rencontrés. Comme il s'agit d'éléments de type bloc, il aligne la marge gauche de chaque élément sur la marge gauche de l'élément conteneur, c'est à dire ici le bloc conteneur initial.
Les principaux éléments créant des boîtes bloc sont :
· l'élément div
· les titres h1, h2, h3, h4, h5, h6
· le paragraphe p
· les listes et éléments de liste ul, ol, li, dl, dd
· le bloc de citation blockquote
· le texte pré-formaté pre
· l'adresse address
[bookmark: _Toc386200674]Boîte de type en-ligne
Par défaut, les boîtes de type en-ligne sont affichées dans une succession horizontale.
Les principaux éléments créant des boîtes en ligne sont :
· l'élément span
· le lien a
· l'image img
· les emphases em et strong
· la citation q
· la citation cite
· l'élément code
· le texte entré par l'utilisateur kbd
· l'exemple samp
· la variable var
· les abréviations et acronymes abbr, acronym
· le texte inséré ins
· le texte supprimé del
Pour résumer le flux normal : c'est un traitement linéaire du contenu de la page. L'alignement des boîtes bloc est vertical ; l'alignement des éléments en-ligne dans les boîtes bloc est horizontal.
[bookmark: _Toc386200675]Les attributs
Chaque balise possède un certain nombre d’attributs qui fonctionnent dans la majorité des cas en clé="valeur" et qui lui donneront des propriétés supplémentaires. Les attributs peuvent générer un comportement spécifique ou même donner un « objet » différent.
Ainsi, si on attribue type="button" à la balise <input>, on obtiendra un bouton tandis que type="text" nous donnera un champ de saisie de texte.
Les attributs universels, c’est-à-dire pouvant s’appliquer à n’importe quel éléments sont :
· id="monid" : qui identifie de façon unique une balise. On verra par la suite que les CSS ou le javascript s’appuient constamment sur cet ID pour accéder à un élément précis.
ex : <p id="paragraphe1">mon texte</p>
· class="mesclasses" : assigne des classes de style à un élément. Essentielles, elles permettent d’assigner des styles à tous les éléments possédant une même classe.
· style="monstyle" : définit les mentions de feuilles de style. Même s’il est universel nous ne préférerons l’utiliser que très rarement au profit des feuilles de style externes.
· title="montitre" : donne un titre, une description à l’élément.
Vous êtes libre de choisir la dénomination de vos id et de vos class mais comme toujours en informatique, évitez les accents, les espaces et les caractères spéciaux (sauf underscore _).
Pour assigner plusieurs classes à un élément – oui c’est possible ! – séparez-les par un espace. Exemple :
class="toto une_autre_classe titi"
Signifie que cet élément possède 3 classes :
· une classe appelée toto
· une classe appelée une_autre_classe
· une classe titi
Les attributs spécifiques plutôt dit logiques puisqu’il serait aberrant de séparer une balise image de sa source « physique » :
· href="lien" : cet attribut ne s’applique qu’à la balise <a> vers quoi pointe le lien. Il peut contenir :
· une URL : href="http://www.uco.fr"
· un fichier : href="monfichier.html" ou href="../unautredossier/monfichier.html"
· une ancre nommée : href="#chapitre2"
· du javascript : href="javascript:mafunction()"
· src="masource" : désigne la source d’une image ou encore la source d’un script javascript. Exemple :
·
· <script src="js/monscript.js" type="text/javascript"></script>

Liste des attributs et de leur signification par élément : http://fr.selfhtml.org/html/reference/attributs.htm
[bookmark: _Toc386200676]Les chemins
Comme vu juste avant, les balises comme ou <a> ont besoin d’être associés à une ressource « physique » pour fonctionner correctement. Pour préciser l’emplacement de cette dernière, on va écrire son « chemin ».
Ce dernier peut s’écrire de différente manière et est souvent la cause d’image non chargée dans la page ou encore de lien menant à une page d’erreur 404.
Pour écrire correctement vos chemins, reportez-vous au chapitre Les feuilles de style (CSS) > Principe de ce même document et lisez également cette page : http://www.php-astux.info/chemins-relatif-absolu.php
[bookmark: _Toc386200677]Application à notre exemple
Avant de s’occuper du côté cosmétique de notre blog exemple, il faut d’abord disposer les grands blocs HTML qui serviront à accueillir le contenu.
La bonne disposition de ces blocs ainsi que leur nommage demande une certaine réflexion car les autres couches (présentation avec les CSS et scripts) s’appuieront largement sur ce socle. Il faut comprendre par là qu’après avoir écrit 1000 lignes de CSS par exemple, ça ne sera pas le moment de changer fondamentalement la structure de ces blocs !
Dans Notepad++, revenez au fichier D:\FORMATION_ISN\UniServer\www\index.html. Ce dernier ne contient pas grand-chose, seulement les éléments constituant un squelette minimal de fichier html (l’ordre est important) :
· l’instruction <!DOCTYPE> (ce n’est pas une balise html) qui permet au navigateur d’identifier à quel type de document il a à faire. Ici un fichier html5.
· les balises de premier niveau :
· <html> balise principale
· <head> le début des entêtes
· <meta> qui va permettre d’indiquer ici le jeu de caractère utilisé dans la page (la balise peut contenir une grande variété d’attribut/valeur)
· <title> le titre de la page
· <body> corps de la page
Entre les balises <body></body>, insérez les blocs suivants (on retrouve cette disposition sur beaucoup de sites à l’heure actuelle mais vous êtes libres de créer les blocs de votre choix avec des noms de classe de votre choix) en utilisant l’élément <DIV> :
· des blocs d’enrobage (wrapper en anglais) qui permettront entre autres de centrer du contenu
· dans ce bloc, découpage en 3 zones :
· un bloc d’entête (header) qui contiendra le logo, le menu, etc
· un bloc de contenu (content) qui contiendra la liste de nos articles de blog ainsi qu’une éventuelle barre d’outils à droite ou à gauche (sidebar)
· un bloc de bas de page (footer) qui contiendra les informations de contact, une synthèse du site, etc
Dans chaque bloc, placez du contenu afin de visualiser dans le navigateur le résultat. Dans la mesure du possible, on identifie les éléments afin de pouvoir les personnaliser (étape 2 : les CSS) de façon unique grâce à l’attribut ID et on assigne éventuellement des classes à certains éléments avec l’attribut CLASS.

<div class='wrapper'>
	
	<div id='header'>
		<div id='logo'>
			<h1>Formation ISN</h1>
			<div class='description'>Formation des enseignants d'informatique – module C5</div>
		</div>
		<ul id='main-nav'>
			accueil
			écrire
			catégories
			contact

	</div>

	<div id='content'>
		<div class='contents'>
		
			<div class="entry">
				<div class="date">
					<div class="jour">02</div>
					<div class="mois">Sep</div>
					<div class="annee">2012</div>
				</div>
				<div class='post'>
					<h2>Mon premier billet</h2>
					<div class='author'>par Jean Durand</div>
					<div class='entry'>
						<p>Sed molestie purus in sapien tempus semper. Pellentesque ut eros eget justo ultrices sollicitudin.
						Maecenas adipiscing semper ante, a tempor orci rhoncus eu. Proin sed risus eros, nec pellentesque lorem.</p>
					</div>
				</div>
			</div>
			
			<div class="entry">
				<div class="date">
					<div class="jour">02</div>
					<div class="mois">Sep</div>
					<div class="annee">2012</div>
				</div>
				<div class='post'>
					<h2>Mon deuxième</h2>
					<div class='author'>par Dupont</div>
					<div class='entry'>
						<p>Donec nec mi urna. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;
						Sed interdum gravida ligula nec ornare. Proin gravida rutrum luctus.
						</p>
					</div>
				</div>
			</div>		
		</div>
		<div id='sidebar'>
			<h3>Liste des catégories</h3>
			
				catégorie 1
				catégorie 2
			
		</div>
	</div>
	
</div>

<div id='footer'>
	<div class="wrapper">
		<h2>A propos</h2>
		<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. In non sapien orci. Nulla facilisi.</p>
	</div>
</div>

Enregistrez votre fichier (Ctrl + S) puis retourner sur http://localhost/formation ou effectuez F5 dans le navigateur pour rafraîchir la page si vous y êtes déjà. Un contenu devrait apparaître.

	Astuce : vous pouvez générer du texte aléatoire très facilement avec Emmett. Par exemple, prenez le bloc <div class=’entry’>…</div>, effacez-en le contenu et à la place tapez :
p*2>lorem puis faites Ctrl + Alt + Enter .
Vous obtiendrez alors 2 paragraphes avec du texte :
<div class='entry'>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Autem, sunt corporis dolorum. Modi, dignissimos, doloremque vero illo rem saepe optio vel alias dicta maiores provident impedit perspiciatis aliquam id voluptas!</p>
<p>Voluptatem, illo, amet totam modi aspernatur itaque est quis praesentium iste officiis illum ipsam nihil deserunt atque dicta odit reiciendis necessitatibus numquam distinctio repellat hic facilis quo magni eaque molestiae?</p>
</div>
Un p*2>lorem10 donnerait la même chose avec un texte de 10 mots :
<div class='entry'>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Possimus, veritatis?</p>
<p>Dolorum, ex, incidunt ratione quidem minus atque temporibus porro tenetur!</p>
</div>

[bookmark: _Toc386200678]Les feuilles de style (CSS)
[bookmark: _Toc386200679]Présentation
CSS (Cascading Style Sheets : feuilles de style en cascade) est un langage informatique qui sert à décrire la présentation des documents HTML et XML. Les standards définissant CSS sont publiés par le World Wide Web Consortium (W3C). Introduit au milieu des années 1990, CSS devient couramment utilisé dans la conception de sites web et bien pris en charge par les navigateurs web dans les années 2000.
[Source : Wikipédia =>http://fr.wikipedia.org/wiki/Feuilles_de_style_en_cascade]
[bookmark: _Toc386200680]Principe
L’écriture des CSS peut se faire directement dans la page HTML via la balise <style> ou encore directement comme valeur d’un attribut style d’un élément HTML, exemple :
mon lien
Mais pour des soucis de clarté et surtout pour pouvoir séparer la présentation d’une page de son contenu, il est plus indiqué de dissocier « physiquement » les 2 fichiers.
Vous utiliserez à cette fin le dossier css et en particulier le fichier styles.css (vierge pour l’instant) :
D:
 +-- FORMATION_ISN
 +-- UniServer
 +-- www
 +-- formation
 +-- css
 --- style.css
 +-- img
 +-- js
Il faut maintenant lier ce fichier css à votre document index.html afin de lui indiquer ou vont se trouver les règles de présentation à appliquer. Cela se fait avec la balise <link> à insérer de préférence entre la balise <head></head>. Le chemin vers ce fichier est à préciser soit :
· de façon relative (on part de l’endroit où l’on se trouve, la plus « portable » des méthodes)
· de façon absolue (on commence à la racine du site)
· avec l’url (http://localhost/formation/css/styles.css)
Ce qui nous donnera (ici de façon relative) :

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Formation ISN</title>
<link href="css/styles.css" rel="stylesheet" type="text/css" />
</head>

Désormais, il suffit de changer le chemin vers une autre feuille de style pour changer peu ou radicalement la présentation de notre site sans en changer le contenu.
(A cet effet, vous pouvez consulter le site Zengarden (http://csszengarden.com/) qui a pour but de démontrer visuellement la puissance des CSS).
[bookmark: _Toc386200681]Les sélecteurs
Ouvrez le fichier D:\FORMATION_ISN\UniServer\www\formation\css\styles.css dans Notepad++. Le langage de base est relativement simple, on précise à quel(s) élément(s) HTML on va assigner des propriétés ou des comportements, on parle de sélecteurs CSS.
La liste des propriétés s’écrit entre accolades et chaque propriété doit être séparée par un point-virgule. Exemple :
#header {
	width: 930px;
	margin-left: 70px;
	padding-bottom: 24px;
	border-top: 8px solid #008C7E;
}
Les sauts de ligne, les espaces et l’indentation ne sont absolument pas obligatoires, on pourrait tout autant écrire :
#header{width:930px;margin-left:70px;padding-bottom:24px;border-top:8px solid #008C7E;}
Les trois sélecteurs absolument indispensables sont :
· la sélection d’UN élément par son attribut html id, on notera alors l’id précédé d’un #.
Exemple : #header {…
· la sélection d’un groupe de balises de même nature, on notera alors le nom de la balise elle-même.
Exemple : p {… ou encore table {…
· la sélection d’un groupe de balises de natures différente par leur attribut class, on notera alors la classe précédée d’un point.
Exemple : .description {… ou encore .toto {…
Retenez que l’ID à la priorité sur la classe qui elle-même à la priorité sur la sélection d’une balise même si l’ordre des déclarations dans le fichier CSS n’est pas celui-ci !
Illustrons ce principe par un petit exemple ; considérons du HTML :
<p id="premier">un premier paragraphe</p>
<p>un premier paragraphe</p>
<p class="textvert">un premier paragraphe</p>
<p class="textvert" id="id2">un premier paragraphe</p>

Puis quelques lignes de CSS :
p { color:blueviolet; margin:0;}
.textvert { color:forestgreen;}
#premier { color:darkorange;}
#id2 { color:navy;}
Nous donnera à l’écran :
un premier paragraphe
un premier paragraphe
un premier paragraphe
un premier paragraphe

	D’autres « sélections » plus complexes sont possibles :

· on peut parcourir les « emboitements » en notant 2 éléments séparés par un espace, on précise alors un parent et un enfant voire plus.
Exemple : #header p a.classe {… qui sélectionnera tous les balises <a> ayant la classe classe et ayant pour parent une balise <p> qui elle-même aura comme parent une balise avec l’ID header.
On peut aussi combiner ces différents choix :

· a#monid … => le lien qui a l’ID « monid »
· a.maclasse … => tous les liens qui ont la classe « maclasse »
· #header a.maclasse … => tous les liens qui ont la classe « maclasse » et qui sont à l’intérieur du bloc qui a l’ID « header »

On peut aussi spécifier que la liste des propriétés doit être attribuée à plusieurs sélecteurs différents, on utilise pour cela la virgule :

· #header, a.maclasse … => la liste des propriétés s’appliquera à l’élément ayant l’ID « header » ainsi qu’à tous les liens ayant la classe « maclasse ».

Il existe bien d’autres sélecteurs CSS que nous n’avons pas le temps de voir ici. Pour aller plus loin sur ce point, vous pouvez consulter ces pages par exemple :

· http://www.tomsyweb.com/component/content/article/48-css/101-les-30-selecteurs-css-a-connaitre
· http://fr.wikibooks.org/wiki/Le_langage_CSS/Les_s%C3%A9lecteurs

[bookmark: _Toc386200682]Les propriétés
La difficulté majeure des CSS – comme dans tout langage - résulte dans l’apprentissage de la syntaxe et du vocabulaire (en anglais) mais heureusement la plupart des éléments ont des propriétés similaires.
Nous ne pouvons pas voir ici toutes les propriétés existantes, pour ce faire consultez cette page : http://www.siteduzero.com/tutoriel-3-13639-memento-des-proprietes-css.html
Retenons surtout que chaque propriété est toujours appelée par son nom suivie de 2 points suivie d’une valeur puis se terminant par un point-virgule.
Les propriétés à connaitre absolument sont :
· La marge extérieure, exemple : margin-left: 10px;
· La marge intérieure, exemple : padding-left: 10px;
· La couleur du texte, exemple : color: #FF0000;
· La police de caractère, exemple : font-family: Arial;
· La largeur d’un élément, exemple : width: 120px;
· La hauteur d’un élément, exemple : height: 120px;

	Les valeurs peuvent parfois prendre une forme contractée. Par exemple la marge extérieure, applicable aux 4 directions (haut, droite, bas, gauche => en anglais : top, right, bottom, left) se note :

#header {
	margin-top: 10px;
	margin-right: 10px;
	margin-bottom: 10px;
	margin-left: 10px;
}

Mais aussi :

#header {
margin: 10px;
}

C’est-à-dire 10 pixels de marges extérieures pour toutes les directions.

Si la taille des marges n’est pas la même pour toutes, il suffit de changer la valeur de chaque propriété dans le premier exemple ou encore de l’écrire sous sa forme courte (toujours dans le sens des aiguilles d’une montre en partant du haut, top :

#header {
	margin: 10px 20px 12px 23px;
}

Il existe une autre forme courte lorsque les propriétés haute-basse et gauche-droite sont les mêmes :

#header {
	margin: 10px 20px;
}

Signifie que les marges haute et basse feront 10px et que les marges gauches et droites feront 20px.

[bookmark: _Toc386200683]Les unités de mesure et les couleurs
En HTML et CSS, les unités de mesure et les couleurs peuvent s’exprimer de différentes manières. Si la valeur en pixel (ex : 12px) pour la première et la notation hexadécimale (ex : #ff0000) pour la seconde sont les plus répandues, sachez que vous pourrez aussi les exprimer comme décrit dans les pages suivantes :
· Unités :
· http://www.commentcamarche.net/contents/css/css-unites.php3
· http://www.w3.org/Style/Examples/007/units.fr.html
· Couleurs :
· http://www.commentcamarche.net/contents/css/css-couleurs.php3
[bookmark: _Toc386200684]Notion d’héritage
Une autre notion importante est celle de l’héritage. Certaines propriétés héritent des propriétés des éléments HTML parents si ces propriétés sont héritables. Par exemple, si on considère le code HTML suivant :
 <body>
	<div class="monbloc">
		<p class='monparagraphe'>un paragraphe</p>
	</div>
</body>
Avec comme css :
body {
	font-family:arial;
	font-size:12px;
}
div {
	color:red;
}
Il fera que le texte « un paragraphe » de l’élément <p> héritera des propriétés font-family et font-size de <body> et de la couleur rouge de l’élément <div> parents si ces propriétés n’ont pas été définies pour la balise <p> ou la classe monparagraphe.
Pour aller plus loin avec cette notion : http://www.alsacreations.com/tuto/lire/545-Comprendre-l-heritage-et-la-parente-des-styles-CSS.html
[bookmark: _Toc386200685]Notion de surcharge
Voici un autre comportement important, la notion de « surcharge » : les propriétés CSS sont lues par le navigateur dans l’ordre du fichier et la dernière propriété lue d’un élément sera celle qui sera appliquée, même en cas de doublon.
De cette façon :
#header {
	margin: 10px 10px 10x 15px;
	margin-left: 10px;
}
donnera en définitive une marge extérieure de 10px pour toutes les directions. Cependant il existe un ordre de priorité, nous l’avons déjà vu dans le chapitre concernant les sélecteurs : l’ID sur la classe puis sur l’élément. Considérons le HTML suivant :
<div id='header' class='essai'>
puis sur les CSS suivantes :
div { margin-left:10px; }
#header { margin-left:15px; }
.essai { margin-left:12px; }
ou
#header { margin-left:15px; }
.essai { margin-left:12px; }
div { margin-left:10px; }
La valeur retenue sera celle de l’ID (#) dans les 2 cas malgré l’ordre de « lecture » du document.
Gardez en tête qu’un élément HTML peut posséder plusieurs classes et que l’effet de surcharge peut donc parfois aboutir à des résultats non-désirés.
Plus les pages et les feuilles de styles deviennent complexes, plus il est nécessaire d’avoir recours aux outils de développement pour retrouver quel sélecteur dans quelle feuille de style a fini par donner cette apparence à un élément HTML.
[bookmark: _Toc386200686]Application à notre exemple
Nous allons maintenant appliquer toutes ces notions à notre blog afin de lui donner l’aspect de ce site par exemple : http://www.learningjquery.com/.
Nous aurions pu concevoir de toute pièce un design à notre blog mais se baser sur quelque chose d’existant pour débuter apporte l’avantage de pouvoir explorer le code via les outils de Chrome en cas de blocage sur un point précis !
Modifions notre fichier styles.css comme ceci (les commentaires dans les fichiers CSS s’écrivent toujours entre /* et */ et uniquement ainsi, pas de //) :
/****************
** Par convention, on définit d'abord les éléments html
*/
html, body { /* les elements html et body n'ont aucune marge */
	margin: 0;
	padding: 0;
}

body {
	/* l'élément body se voit attribuer une police qu'il donnera
	 en héritage à ses enfants et une couleur de fond */
	font-family: Georgia,"Lucida Grande","Lucida Sans Unicode",Helvetica,verdana,arial,sans-serif;
	background-color: #F4F3EB;
}

a { /* on donne une couleur à tous les liens du document */
	color: #D44314;
	text-decoration: none;
}

/****************
** ensuite on surcharge avec les classes et ID ; généralement
** dans l'ordre des grands blocs
*/
.wrapper { /* on donne à l'enveloppe une largeur fixe et on la
 centre grace à la valeur auto pour les marges
 gauche et droite */			
	width: 1000px;
	margin: 0 auto;
}

#header { /* l'entête aura une largeur de 930 pixels avec une marge
 gauche de 70 pixels soit 1000 pixel au total
			 On définit aussi un bord haut d'épaisseur 8 pixels de
			 style 'solid' et de couleur #008C7E */
	width: 930px;
	margin-left: 70px;
	padding-bottom: 24px;
	border-top: 8px solid #008C7E;
	/* A noter que la valeur de la propriété 'border-top' est une forme
	contractée des 3 propriétés suivantes :
	border-top-color: #008C7E;
	border-top-width: 8px;
	border-top-style: solid;
	*/
}

#footer {
	color: #7BC3C7;
	background-color: #28393A;
padding: 15px 0px;
clear: both;
}
Dans Notepad++ les éléments (bleus foncés) sont différenciés des ID (bleus clairs) et des classes (rouge).
Une fois la page rafraîchie dans le navigateur on constate que notre page a déjà changée et commence à devenir plus claire dans sa lecture, par exemple, en faisant ressortir les liens, de couleur différente.
[bookmark: _Toc386200687]Comportement de type bloc ou de type en ligne
Si vous ne voulez pas suivre ce chapitre de « niveau avancé », pensez cependant à ajouter le code CSS ci-dessous dans votre fichier styles.css afin d’être à jour pour la suite du support.
	Intéressons-nous maintenant au logo et au menu de droite qui sont pour l’instant des éléments <div> dont le comportement par défaut implique qu’ils sont placés l’un en dessous des autres (type bloc) contrairement à l’élément <a> par exemple qui s’insère au fil du contenu, du texte (type en ligne).

Dans notre exemple nous souhaiterions pourtant que ces éléments soient côte à côte tout en gardant les spécificités de <div>.

C’est tout à fait possible en rendant un élément de type bloc « flottant » grâce à la propriété « float ». Nous allons appliquer cette propriété au bloc « #logo ». Concernant les éléments de la liste d’énumération que constitue le menu, ils possèdent une propriété display qui leur permet de s’afficher en ligne.

Ajoutons ces lignes à notre fichier CSS :

#logo { /* le bloc devient "flottant" à gauche */
	float: left;
	width: 430px;
}
#logo h1 {
	margin:15px 0px 0px 0px;
}

#main-nav { /* le menu devient "flottant" à droite */
	float: right;
	margin: 44px 0px 0px 0px;
	width: 470px;
	padding:0;
}

#main-nav li {
	padding: 4px 25px 4px 0;
	display: inline; /* les li ne sont pas vraiment des éléments de type block
					ils possèdent simplement une propriété d'affichage qui va définir
					si les éléments de la liste s'affichent les uns en dessous des
					autres ou les uns à côté des autres */
}

#main-nav a {
	text-align: left;
	text-transform: uppercase; /* transforme le texte en majuscule */
}

#main-nav a:hover { /* le :hover spécifie un évenement : ici on appliquera ces propriétés
					lorsque la souris sera au-dessus d'un lien du menu #main-nav */
	text-shadow: 1px 1px #b17460;
}

.description {
	color: #86837A;
	font-family: "Verlag Condensed","Abadi MT Condensed","Futura Std Light Condensed","Futura Condensed","Gill Sans","Arial Narrow",Calibri,"Trebuchet MS",Georgia,sans-serif;
	font-size:0.9em;
}

#content {
	padding: 24px 0;
}

Complétons les propriétés de #header avec :
	#header {
	height: 115px;
	border-bottom: 1px solid #CEC6B5;
	box-shadow: 0px 1px 1px #fff; /* ! propriété CSS3 : ne sera pas compris
									par tous les navigateurs ! */
}

Vous trouverez ici 2 listes énumérant les éléments HTML ayant :

· un comportement de type bloc : http://htmlhelp.com/reference/html40/block.html
· un comportement de type en ligne : http://htmlhelp.com/reference/html40/inline.html

Et si vous voulez creuser un peu plus la notion de positionnement en CSS, lisez :

· http://www.alsacreations.com/article/lire/533-initiation-au-positionnement-en-css-partie-1.html
· Et http://www.alsacreations.com/tuto/lire/608-initiation-au-positionnement-css-partie-2.html

[bookmark: _Toc386200688]Les images
Les images en HTML et CSS peuvent s’utiliser de deux manières :
· en HTML, comme un élément parmi d’autres avec la balise
· en CSS, comme une propriété à appliquer à un élément. C’est-à-dire que l’on va « plaquer » une image en fond de l’élément.
Tout d’abord, remplaçons le titre du blog par une balise image (ligne 16 du fichier index.html) (l’image est déjà présente dans l’archive que vous avez décompressée) :
<h1></h1>
La largeur (attribut width) et la hauteur (height) ne sont pas obligatoires puisque l’élément HTML prendra les dimensions de l’image physique mais vivement conseillées lorsqu’on les connaît afin d’éviter des problèmes d’alignement si jamais l’image n’existe plus ou que le chemin a changé.
Dans ce cas, le navigateur – s’il n’affiche plus l’image (une croix à la place) – réservera pour la balise les dimensions proposées.
Si les dimensions notées sont supérieures à celles de l’image physique, cette dernière est alors « étirée ».
Maintenant, pour accentuer la lisibilité nous allons ajouter des images de fond à certains éléments. Si cette propriété « décorative » n’intervient aucunement dans la navigation, elle peut parfois jouer un rôle dans l’effet visuel de séparation des blocs.
Avec ce procédé, nous allons appliquer une sorte de dégradé au <body> afin de « marquer » le haut de la page et une image mitoyenne au logo afin d’attirer immédiatement l’œil sur le titre du blog. Ceci sera effectué sur la classe .wrapper.
body {
	/* l'élément body se voit attribuer une police qu'il donnera
	 en héritage à ses enfants et une couleur de fond */
	font-family: Georgia,"Lucida Grande","Lucida Sans Unicode",Helvetica,verdana,arial,sans-serif;
	background: #F4F3EB url(../img/fond_body.png) repeat-x 0 0;
	/*
	la propriété background est la contraction de plusieurs propriétés :
	background-color: #F4F3EB;
	background-image: url(../img/fond_body.png);
	background-position: 0 0 ou background-position: left top;
	background-repeat: repeat-x; afin de répéter l'image sur toute la longueur
					de l'élément
	*/
}
.wrapper { /* on donne à l'enveloppe une largeur fixe et on la
 centre grace à la valeur auto pour les marges
 gauche et droite */			
	width: 1000px;
	margin: 0 auto;
	background: transparent url(../img/logo.png) no-repeat left top;
}
Notez que l’url de l’image s’écrit de façon relative, absolue ou sous forme d’url (voir chapitre sur les chemins).
En rafraîchissant notre navigateur nous pouvons constater que le bas de page a du coup lui aussi l’image de fond puisqu’il possède également la classe .wrapper ! Comment éviter ce phénomène sans renommer les classes afin de préserver les autres propriétés de la classe .wrapper ?
Plusieurs méthodes s’offrent à vous (de la moins bonne à la meilleure mais c’est discutable) :
· Une méthode consisterait à dire que la classe .wrapper contenu dans le parent #footer ne doit pas posséder d’image de fond :
#footer .wrapper { background-image : none; }
· Une autre d’attribuer une deuxième classe à l’élément .wrapper contenu dans #footer et ainsi appliquer un effet de surcharge
<div class="wrapper nobackg">
puis de dire que la classe .nobackg n’a pas d’image de fond :
.nobackg { background-image : none; }
· La dernière – que nous choisirons – est d’utiliser un sélecteur CSS spécifique afin de spécifier que seule la classe .wrapper, première descendante de l’élément body sera concernée par l’image. On réécrit donc la classe .wrapper dans son état initial et on ajoute une déclaration.
.wrapper { /* on donne à l'enveloppe une largeur fixe et on la
 centre grace à la valeur auto pour les marges
 gauche et droite */			
	width: 1000px;
	margin: 0 auto;
}
body > .wrapper {
	background: transparent url(../img/logo.png) no-repeat left top;
}
[bookmark: _Toc386200689]Le colonage
Si vous ne voulez pas suivre ce chapitre de « niveau avancé », pensez cependant à copier le code CSS ci-dessous dans votre fichier styles.css afin d’être à jour pour la suite du support.
	Nous souhaitons maintenant créer 2 colonnes dans la partie « contenu » :

· A gauche, la liste des billets du blog
· A droite, « une barre » listant les catégories du blog par exemple

Il existe plusieurs méthodes pour créer « un effet de colonne » en CSS. Dans cette exemple, nous allons en fait laisser la <div id="#sidebar"> se comporter en bloc en lui imposant simplement une marge gauche très importante qui correspondra en fait à la largeur du contenu.

Ensuite pour pouvoir loger le contenu dans l’espace de la marge, il suffit de le rendre « flottant » et de spécifier que le #footer « ne suivra pas le flux flottant ». On en profite pour styler quelques autres éléments.

#sidebar {
	width: 290px;
	margin-left: 710px;
	font-size: .85em;
}
#sidebar h3 {
	margin:15px 0px;
	color:#28393A;
	text-transform: uppercase;
	border-bottom: 1px solid #CEC6B5;
	box-shadow: 0px 1px 1px #fff; /* ! propriété CSS3 : ne sera pas compris
par tous les navigateurs ! */
	padding-bottom: 3px;
	margin-bottom: .5em;
	font-weight: normal; /* on annule la valeur "bold" généralement attribuée
aux <H>*/
}
/* La balise désignant une liste en HTML est et ses enfants, les éléments de la liste, notés */
#sidebar ul {
margin:0;
padding:0;
}
#sidebar li {
border-bottom: 1px solid #DFDBCE;
list-style: none; /* supprime la puce des éléments listés */
padding:8px 0px;
margin:0;
}
.contents {
	float: left;
	width: 680px;
	padding-right: 30px;
	padding-bottom: 2em;
	color: #286762;
	font-size: .9em;
}
.contents h2 {
	margin-bottom: .3em;
	line-height: 1.33em;
	font-size: 1.8em;
	font-weight: 200;
}
.contents h2 a {
	color: #28393A;
}
.post {
	margin-left: 70px;
	margin-bottom: 24px;
	padding-bottom: 24px;
	border-bottom: 1px solid #CEC6B5;
	box-shadow: 0px 1px 1px #fff; /* ! propriété CSS3 : ne sera pas compris
par tous les navigateurs ! */
}
.date {
	width: 50px;
	height: 50px;
	float: left;
	text-align:center;
	color: #D0CEBA;
}
.jour {
	font-size:1.2em;
}
.mois {
	font-size:1.3em;
	font-weight: bold;
}
.annee {
	font-size:1.2em;
}

La couche présentation est terminée, nous pouvons consulter le résultat dans le navigateur ! Et pourquoi pas essayer dans un navigateur différent (ex :IE) pour comparer …

[bookmark: _Toc386200690]Conclusion
Terminons ce chapitre sur les CSS avec une petite mise en garde : les CSS ne sont que des recommandations et même si le comportement des différents navigateurs tend à se standardiser, il existe encore beaucoup de disparité entre ces derniers qui décident ou non d’adopter telle ou telle préconisation.
Il faudra donc encore passer beaucoup de temps à tester la couche « présentation » dans les principaux navigateurs existants et souvent trouver des astuces pour la faire fonctionner (sur Internet Explorer en particulier !).
[bookmark: _Toc386200691]Le Javascript
[bookmark: _Toc386200692]Présentation
JavaScript est un langage de programmation de scripts principalement utilisé dans les pages web interactives. […]
Du code JavaScript peut être intégré directement au sein des pages web, pour y être exécuté sur le poste client. C'est alors le navigateur Web qui prend en charge l'exécution de ces programmes appelés scripts.
Généralement, JavaScript sert à contrôler les données saisies dans des formulaires HTML, ou à interagir avec le document HTML via l'interface Document Object Model, fournie par le navigateur (on parle alors parfois de HTML dynamique ou DHTML). Il est aussi utilisé pour réaliser des services dynamiques, parfois futiles, strictement cosmétiques ou à des fins ergonomiques.
[Source : Wikipédia => http://fr.wikipedia.org/wiki/JavaScript]

Au cours de ce chapitre, nous ne ferons qu’effleurer le sujet - qui là aussi mériterait plusieurs jours – en écrivant un petit script s’appliquant à notre exemple. Nous ne pouvons aborder toute les spécificités de ce langage qui peut se révéler très puissant puisque orienté objet (http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_objet).
Pour bien en comprendre toutes les clés, n’hésitez pas à lire cette documentation très pédagogique : http://www.commentcamarche.net/contents/javascript/
A RETENIR ABSOLUMENT : le javascript intervient TOUJOURS au niveau « client », c’est-à-dire au niveau du navigateur de l’utilisateur. Avec Javascript, vous ne pourrez JAMAIS modifier - par exemple - une base de données présente sur le serveur !
[bookmark: _Toc386200693]A quoi ressemble un script ?
Les scripts s’insèrent dans un document HTML avec la balise <script>, par exemple :
<script type="text/javascript">
	var montexte = "hello";
	alert(montexte);
</script>
Cependant, comme pour les feuilles de style, il est beaucoup plus avantageux de séparer les scripts du document en les plaçant dans des fichiers avec extension .js.
Liez le fichier D:\FORMATION_ISN\UniServer\www\formation\js\script.js au document D:\FORMATION_ISN\UniServer\www\formation\index.html (entre la balise <head>) de cette manière :
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Formation ISN</title>

<link href="css/styles.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="js/script.js"></script>
</head>
Le javascript peut également intervenir directement dans les éléments HTML de par certains attributs d’événement : onclick, onfocus, onmouseover, etc, par exemple pour produire une action lorsque l’on clique sur un lien.
Essayez de modifier un de nos liens de menu de cette façon :
contact
Et rechargez la page dans le navigateur à l’aide la touche F5 pour voir le résultat en cliquant sur ce lien.
Pensez lorsque vous commencez à écrire du javascript à toujours avoir l’onglet console des outils de développement ouvert. Ainsi, au lieu d’essayer de comprendre pendant des heures pourquoi votre programme ne fonctionne pas, vous saurez tout de suite à quelle ligne vous avez une erreur et que la cause est peut-être un problème de syntaxe, un point-virgule manquant par exemple.
[bookmark: _Toc386200694]Application à notre exemple
Dans notre exemple, nous allons essayer d’afficher la date et l’heure dans le bas de page, ce qui n’a pas grand intérêt, nous sommes d’accord !
Ouvrez D:\FORMATION_ISN\UniServer\www\formation\js\script.js dans Notepad++. Dans ce fichier écrivez (les commentaires peuvent se noter /* et */ ou encore // pour une seule ligne) :
// la variable date contient la date courante obtenu par la classe Date
var date = new Date();
console.log(date);

// la variable mois contient le N° du mois à partir de 0
// pour un affichage cohérent on ajoute donc 1
var mois = date.getMonth() + 1;
	
var annee = date.getFullYear();

var jour = date.getDate();
var heure = date.getHours();
var min = date.getMinutes();
var sec = date.getSeconds();

// on affiche le résultat à l'aide de la classe document
// le
 sert à écrire un élémént HTML qui effectuera
// un saut de ligne
document.write(jour + " / " + mois + " / " + annee + "
");
document.write(heure + " : " + min + " : " + sec);
Que fait le script ?
Tout d’abord, il calcule la date du jour à l’aide de la classe Date (objet interne au javascript qui se charge de récupérer la date sur l’ordinateur ou il est exécuté).
Encore une fois, rappelons que le javascript est exécuté côté client. Ainsi 2 ordinateurs qui iraient chercher la même page index.html sur le même serveur Apache pourraient se retrouver avec 2 dates complètement différentes !
Ensuite, il prépare son affichage pour le rendre lisible à l’œil humain (l’ajout du +1) puis l’affiche à l’aide de la classe document.
On notera qu’en Javascript :
· Chaque instruction se termine par un ;
· Les chaînes de caractère s’entourent avec " ou '
· Les variables sont définies avec le mot clé var
· On peut « écrire » des éléments HTML (le
 dans notre exemple) dans une chaîne qui sera alors interprétée lors de l’envoi vers l’affichage
· Les commentaires s’écrivent :
· Entre /* et */ pour commenter plusieurs lignes
· <!-- et --> idem
· // pour une seule ligne
· L’instruction console.log() permet de renvoyer une valeur ou un objet vers l’onglet console des outils de développement.
· Que l’opérateur qui permet de concaténer des chaînes et que l’opérateur d’addition est le même, il s’agit du + (nous verrons plus tard qu’avec d’autre langage comme php, on différencie les 2).
Vous pouvez constater dans le navigateur que le résultat est correct mais qu’il s’affiche tout en haut, en dehors des grands blocs HTML. C’est tout à fait normal, l’affichage du résultat d’un script se fait à l’endroit où est exécuté le script et si le script est exécuté avant la balise <body>, le résultat sera affiché automatiquement juste après cette dernière.
C’est notre cas ici et on peut le vérifier facilement avec les outils de développement de Chrome (onglet Elements) ou encore en remplaçant les 2 instructions :
document.write(jour + " / " + mois + " / " + annee + "
");
document.write(heure + " : " + min + " : " + sec);
par :
alert(jour + " / " + mois + " / " + annee + "\n" + heure + " : " + min + " : " + sec);

Recharger la page pour constater qu’au moment où le programme s’arrête pour afficher la boîte de dialogue, la page est blanche = aucune élément HTML n’a encore été chargé !

Maintenant si nous voulons un affichage en bas de page, il suffirait de déplacer la ligne suivante dans le bloc #footer :
<script type="text/javascript" src="js/scripts.js"></script>
Si cela fonctionne, cette méthode n’est pas conseillée. Pour garder une cohérence et une lisibilité maximale tous les scripts doivent être appelés au même endroit entre le <head> (ou à la fin du document juste avant de fermer la balise </body> dans le cas d’une page « optimisée » pour l’affichage mais il s’agit là d’un autre sujet).
On préfèrera insérer notre résultat à l’endroit désiré via des instructions du script lui-même en parcourant les nœuds du DOM (la structure, l’emboîtement des éléments HTML en quelque sorte).
[bookmark: _Toc386200695]Les nœuds du DOM
	Un langage de marquage comme HTML ou tout autre langage basé sur XML peut être schématisé comme une arborescence hiérarchisée. Les différentes composantes d'une telle arborescence sont désignées comme étant des nœuds.
L'objet central du modèle DOM est pour cette raison l'objet node (node = nœud). Il existe différents types de nœuds. Dans un document HTML ordinaire existent dans tous les cas trois types de nœud importants qu'il nous faut distinguer :
· les nœuds-élément
· les nœuds-attribut
· et les nœuds-texte.

Grâce à javascript il est possible d’intervenir directement sur ces nœuds pour en modifier la hiérarchie.

Supprimons de notre fichier js les deux lignes servant à l’affichage document.write puis ajoutons maintenant le code suivant :

// on stocke l'affichage de la date et heure dans des variables
var formatD = jour + "/" + mois + "/" + annee;
var formatH = heure + " : " + min + " : " + sec;

// insertion dans le DOM
// on prépare une nouvel élément HTML <p> en le stockant dans une variable
var nouveauParagraphe = document.createElement('p');

// on lui assigne un attribut supplémentaire
nouveauParagraphe.setAttribute('title','voici le titre de mon paragraphe');

// on prépare du texte que l'on assigne au paragraphe
// on anti-slashe l'apostrophe puisque l'apostrophe sert de caractère d'entourage
// à la chaine de caractères
var duTexte = document.createTextNode('Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH);
nouveauParagraphe.appendChild(duTexte);

// enfin on peut insérer notre nouveau noeud à l'intérieur d'un autre élément HTML
document.getElementById('footer').appendChild(nouveauParagraphe);

Il permet d’insérer plus subtilement notre date dans les nœuds du document et non pas de façon « brute ».

Rafraîchissez votre page. Pourquoi ne se passe-t-il rien ? Essayons d’aller voir dans la console javascript des outils de développement de Chrome.
Une erreur est survenue ligne 35. En fait c’est très simple si on comprend bien comment le serveur web communique avec le navigateur et comment ce dernier lit les informations qui lui sont envoyées.

Toujours dans Chrome, passez à l’onglet Network puis appuyez sur F5 (pour recharger la page) pour voir ce qui se passe entre le serveur et le navigateur. Dans l’ordre chronologique :

· Le serveur envoi un document html
· Ce dernier est lu dans l’ordre par le navigateur :
· En rencontrant la balise <script> avec l’attribut src, le navigateur demande au serveur de lui envoyer le script qui y est précisé
· Le script est exécuté
· Le navigateur continue la lecture du fichier html puis arrivé au <body> commence à insérer les éléments dans la page un par un jusqu’au #footer

Et bien voici notre réponse : le script a été exécuté avant le chargement des éléments HTML, or il essaie justement d’insérer du contenu dans un élément nommé #footer qui n’existe pas encore, d’où la valeur null renvoyée !

Une première approche pourrait consister à déplacer

<script type="text/javascript" src="js/scripts.js"></script>

à la fin du document pour qu’il soit exécuté une fois les éléments HTML chargés mais nous ne serons jamais sûrs à 100% que le script sera exécuté après le chargement du DOM du fait de la communication réseau entre le client et le serveur.

Heureusement, la classe javascript window possède une méthode qui réalise cela. Entourons tout notre code javascript contenu dans le fichier scripts.js avec window.onload = function () { et } (c’est-à-dire au tout début du fichier puis une accolade fermante tout à la fin).

Cette fois-ci le résultat est correct dans le navigateur ! …

… sauf qu’il n’est pas centré !

Et bien pas de problème, de la même manière dont nous avons positionné le nœud attribut title, nous allons positionner un attribut class qui se chargera de déléguer cette tâche aux CSS.

D’ailleurs nous avons déjà une classe qui effectue un « centrage », il s’agit de .wrapper. On écrira alors sous le premier setAttribute par exemple :

nouveauParagraphe.setAttribute('class','wrapper');

[bookmark: _Toc386200696]Introduction aux fonctions
Une fonction est un sous-programme qui permet de réaliser une tâche récurrente en lui passant éventuellement des arguments qui modifieront son résultat ou son action.
Nous allons essayer d’appliquer ce concept à notre exemple pour faire en sorte que notre date s’affiche dans un élément HTML non connu à l’avance, ça sera le premier argument de notre fonction et prenne un format spécifique, ça sera notre deuxième argument.
Tout d’abord nous n’avons plus besoin de window.onload = function () { décrit dans le chapitre précédent puisqu’une fonction n’est exécutée que lorsqu’on l’appelle ; nous n’aurons donc plus d’erreur null. Nous allons remplacer cette instruction par (toujours dans le scripts.js) :
function afficheDate (elementID, format) {
De cette manière nous définissons une fonction nommée afficheDate qui possède 2 arguments sous forme de variables dont les noms sont elementID et format.
Comment utiliser ces arguments dans la fonction ?
· Le premier argument doit remplacer la valeur de l’ID de l’élément HTML dans lequel on veut afficher notre date, c’est donc la dernière ligne qui est concernée. Notre variable elementID va remplacer la valeur actuelle qui était footer
· Le deuxième concerne plutôt la ligne qui va définir le nœud texte à afficher, soit createTextNode. Nous allons remplacer le texte à afficher par une variable qui elle-même contiendra un choix de formulation dépendant de l’argument format.
Le choix se fera à l’aide de la structure conditionnelle if() {…

function afficheDate (elementID, format) {
	// la variable date contient la date courante obtenue par la classe Date
	var date = new Date();

	// la variable mois contient le N° du mois à partir de 0
	// pour un affichage cohérent on ajoute donc 1
	var mois = date.getMonth() + 1;
		
	var annee = date.getFullYear();

	var jour = date.getDate();
	var heure = date.getHours();
	var min = date.getMinutes();
	var sec = date.getSeconds();

	// on stocke l'affichage de la date et heure dans des variables
	var formatD = jour + "/" + mois + "/" + annee;
	var formatH = heure + " : " + min + " : " + sec;

	// insertion dans le DOM
	// on prépare une nouvel élément HTML <p> en le stockant dans une variable
	var nouveauParagraphe = document.createElement('p');

	// on lui assigne un attribut supplémentaire
	nouveauParagraphe.setAttribute('title','voici le titre de mon paragraphe');
	
	// on définit quel texte on devra afficher selon le choix de l'utilisateur
	// définit par le paramètre "format"
	var texte = ""
	
	if(format == 'court') { // si le format est 'court' alors ...
		
		texte = formatD;
	
	} else if(format == 'long') { // sinon s'il est 'long' alors ...
		
		texte = 'Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH;
	
	}
	
	// on prépare du texte que l'on assigne au paragraphe
	// on anti-slashe l'apostrophe puisque l'apostrophe sert de caractère d'entourage
	// à la chaine de caractères
	var duTexte = document.createTextNode(texte);
	nouveauParagraphe.appendChild(duTexte);

	// enfin on peut insérer notre nouveau noeud à l'intérieur d'un autre élément HTML
	// en précisant son ID
	document.getElementById(elementID).appendChild(nouveauParagraphe);
}
	Cette fonction semble correcte mais nous pouvons optimiser un peu notre code en améliorant la gestion du choix du texte à afficher. Notre format ne peut prendre que 2 valeurs, nous n’avons donc pas besoin de tester 2 possibilités mais une seule !

Pour se faire, on pré-remplit notre variable texte par l’une des 2 valeurs puis on teste son contraire. Si ce test remplit la condition on écrase la valeur de la variable :

// on définit quel texte on devra afficher selon le choix de l'utilisateur
// définit par le paramètre "format"
var texte = 'Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH;
	
if(format == 'court') { // si le format est 'court' alors ...
			// pour toute autre valeur de 'format'
			// 'texte' contiendra la valeur initiale
	texte = formatD;
	
}
Et cette méthode peut même être encore optimisée sous cette forme très courte qui fait exactement la même chose :

// on définit quel texte on devra afficher selon le choix de l'utilisateur
// définit par le paramètre "format"
var texte = (format == 'court') ? formatD : 'Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH;

Il nous reste maintenant à appeler notre fonction au moment souhaité, par exemple au chargement de la page (affiche la date dans le footer au format long) :

 window.onload = function () {
	afficheDate('footer','long');
}

ou encore lors d’un évènement sur un élément HTML, dans index.html :

contact

Un clic sur le lien contact affichera notre date au format court dans le header.

[bookmark: _Toc386200697]Introduction à jQuery
	Le javascript n’est pas toujours aisé à écrire en particulier lorsque l’on doit manipuler le DOM, heureusement depuis quelques années des bibliothèques de simplification des commandes javascript sont apparues.

jQuery (http://fr.wikipedia.org/wiki/JQuery et http://jquery.com/), la plus en vogue à l’heure actuelle, excelle dans la manipulation des nœuds.

Le fonctionnement est très simple : on charge la bibliothèque dans notre page - il s’agit d’un simple fichier javascript à l’extension js - et on dispose alors de toutes les commandes et objets jQuery.

Encore une fois, il reste à apprendre la syntaxe et comprendre la logique de la bibliothèque.

Pour cerner un petit bout de la puissance qu’offre une telle bibliothèque, ajoutez-la à notre page (avant scripts.js sinon nous ne pourrons pas utiliser de commande jQuery dans ce dernier comme la bibliothèque n’aura pas encore été chargée) :

<script type="text/javascript" src="http://code.jquery.com/ jquery-1.9.1.min.js "></script>
<script type="text/javascript" src="js/scripts.js"></script>

A noter : on pourrait tout autant rapatrier la bibliothèque en local sur notre serveur et faire un lien relatif, ça serait d’ailleurs plus sûr en cas de défaillance du serveur jquery.com.

Maintenant, nous allons ré-écrire toute cette portion de notre code :

// insertion dans le DOM
// on prépare une nouvel élément HTML <p> en le stockant dans une variable
var nouveauParagraphe = document.createElement('p');

// on lui assigne un attribut supplémentaire
nouveauParagraphe.setAttribute('title','voici le titre de mon paragraphe');
nouveauParagraphe.setAttribute('class','wrapper');

// on définit quel texte on devra afficher selon le choix de l'utilisateur
// défini par le paramètre "format"
var texte = (format == 'court') ? formatD : 'Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH;

// on prépare du texte que l'on assigne au paragraphe
// on anti-slashe l'apostrophe puisque l'apostrophe sert de caractère d'entourage
// à la chaine de caractères
var duTexte = document.createTextNode(texte);
nouveauParagraphe.appendChild(duTexte);

// enfin on peut insérer notre nouveau noeud à l'intérieur d'un autre élément HTML
// en précisant son ID
document.getElementById(elementID).appendChild(nouveauParagraphe);

En « jQuery » :

// on définit quel texte on devra afficher selon le choix de l'utilisateur
// définit par le paramètre "format"
var texte = (format == 'court') ? formatD : 'Nous sommes aujourd\'hui le '+formatD+' et il est '+formatH;

$('<p>'+texte+'</p>').addClass('wrapper').attr('title','voici le titre de mon paragraphe').appendTo(elementID);

Sans oublier que l’argument appelé dans la fonction n’est plus forcément un ID mais peut être aussi une classe ou un élément, on aura donc par exemple :

onclick="afficheDate('#header','court')" à la place de onclick="afficheDate('header','court')"

ou bien essayez de passer par exemple une classe CSS de cette manière :

onclick="afficheDate('.post','court')"

Voilà, en jQuery une ligne suffit grâce au chainage des instructions !

Et comme on peut utiliser les sélecteurs CSS avec jQuery, tout devient très simple. Observons cette instruction :

$('#header').css({'borderTopWidth':'16px','borderColor':'#D74316'}).next().find('.mois').text('test').parents('.wrapper').next().children().removeClass('wrapper');

Testez-la dans notre page si vous le souhaitez !

Et voici tout ce qu’elle effectue en une ligne de code :

· elle sélectionne l’élément ayant pour ID header
· elle lui applique 2 instructions CSS :
· Une épaisseur de bord haut à 16px
· Une couleur de bord = #D74316
· Avec next(), elle passe à l’élément qui suit #header dans le DOM, #content donc
· A l’intérieur de ce dernier elle cherche avec find() tous les éléments ayant une classe .mois
· elle définit le nouveau texte de tous ces éléments
· elle remonte toute la hierarchie du DOM jusqu’au parent ayant une classe .wrapper
· De là, elle passe à l’élément suivant, à savoir #footer
· Puis elle prend le premier enfant de ce dernier et lui enlève la classe .wrapper

[bookmark: _Toc386200698]Les bases de données
ATTENTION : nous sommes maintenant dans la partie « serveur » du support ! Si vous aviez pris l’habitude de tapez l’adresse file:///D:/FORMATION_ISN/www/index.html dans votre navigateur ou d’ouvrir ce fichier par fichier > ouvrir ou encore de faire glisser le fichier dans la page du navigateur, cela ne fonctionnera plus !
Vous devez impérativement taper l’adresse de votre serveur, http://localhost dans notre exemple.
[bookmark: _Toc386200699]Généralités
En informatique, une base de données (Abr. : « BD » ou « BdD » ou encore DB en anglais) est un lot d'informations stockées dans un dispositif informatique. Les technologies existantes permettent d'organiser et de structurer la base de données de manière à pouvoir facilement manipuler le contenu et stocker efficacement de très grandes quantités d'informations. […]
La motivation fondamentale de l'organisation des données est de permettre d'effectuer des inférences (requêtes) sur celles-ci. Le modèle de données relationnel est aujourd'hui le plus utilisé parce qu'il est formellement démontré que ce type de représentation permet de résoudre toutes requêtes, contrairement aux modèles hiérarchiques et réseau.
[Source : Wikipédia => http://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es]
[Voir aussi => http://fr.wikipedia.org/wiki/Mod%C3%A8le_relationnel]
[bookmark: _Toc386200700]Le langage SQL
SQL (sigle de Structured Query Language) est un langage informatique normalisé servant à effectuer des opérations sur des bases de données. La partie langage de manipulation de données de SQL permet de rechercher, d'ajouter, de modifier ou de supprimer des données dans les bases de données. […]
Les instructions SQL s'écrivent d'une manière qui ressemble à celle de phrases ordinaires en anglais. Cette ressemblance voulue vise à faciliter l'apprentissage et la lecture.
Exemple d’une sélection dans une table de la base de données :
SELECT name, service
FROM employees
WHERE statut = 'stagiaire'
ORDER BY name;
[Source : Wikipédia => http://fr.wikipedia.org/wiki/SQL]

Que fait l’exemple ci-dessus ? : Il sélectionne toutes les lignes de la table employees dont le champ statut est égal à stagiaire. Il ne renverra – pour chaque ligne – que les champs name et service et classera les lignes dans l’ordre alphabétique du champ name.
Si on imagine que les données stockées sont cohérentes avec le nom des champs, on pourrait le dire autrement :
« Donne-moi le nom et le service de tous les stagiaires parmi les employés en les classant alphabétiquement sur leur nom ».
Avec le langage SQL, on peut :
· Définir les éléments d’une base de données
· Manipuler des données (sélection, insertion, suppression)
· Gérer les droits d’accès aux données
Pour aller plus loin, le SQL de A à Z : http://sqlpro.developpez.com/cours/sqlaz/fondements/
[bookmark: _Toc386200701]Le système de gestion de base de données MySQL
[bookmark: _Toc386200702]Présentation
MySQL est un système de gestion de base de données (SGBD). Selon le type d'application, sa licence est libre ou propriétaire. Il fait partie des logiciels de gestion de base de données les plus utilisés au monde, autant par le grand public (applications web principalement) que par des professionnels, en concurrence avec Oracle, Informix et Microsoft SQL Server.
[Source : Wikipédia => http://fr.wikipedia.org/wiki/Mysql]
[Aller plus loin => http://dev.mysql.com/doc/refman/5.0/fr/tutorial.html]
[bookmark: _Toc386200703]Démarrage du serveur MySQL
Si vous ne l’avez pas déjà fait, vous devez démarrer le serveur MySQL en cliquant sur Démarrer MySQL dans l’interface graphique d’UniServer. Si tout se passe bien il doit passer « au vert » comme l’est Apache dans la même interface.
[image:]
[bookmark: _Toc386200704]PhpMyAdmin
Si dans MySQL, les commandes SQL permettant de manipuler les données peuvent être tapées directement en ligne de commande, il existe des interfaces graphiques qui se proposent d’assister l’utilisateur ; pratique lorsque l’on ne connait pas encore bien le SQL. La plupart des L/WAMP sont « packagés » avec l’une d’elle : phpMyAdmin.
Cette dernière est en fait une application PHP accessible par le navigateur. Dans notre cas, à cette adresse :
http://localhost/us_phpmyadmin/
Vous pouvez également cliquer ici dans l’interface graphique d’UniServer :
[image:]
Mais attention dans ce cas-là, ce n’est peut-être pas le navigateur souhaité qui s’ouvrira !
Notez que le chemin D:\FORMATION_ISN\UniServer\www\us_phpmyadmin n’existe pas physiquement mais que pourtant l’adresse http://localhost/us_phpmyadmin fonctionne dans le navigateur ! En fait Apache est capable de créer des alias sur d’autres chemins.
Si vous tomber sur une page en anglais ou en allemand, changez la langue de phpMyAdmin ici :
[image:]
[bookmark: _Toc386200705]Application à notre exemple
Créez d’abord une base de données qui contiendra vos différentes tables. Dans l’ébauche de ce blog nous ne créerons qu’une seule table, celle des billets (posts en anglais) mais il faut imaginer qu’un programme de blog complet comprendrait au moins 3 tables :
· Une table billets
· Une table categories
· Une table auteurs
Et qui seraient liées ensemble, ainsi : « un billet possède un auteur et au moins une catégorie ».
Par manque de temps, nous n’aborderons pas les notions de relations, de jointures entre les tables. Si vous souhaitez aller plus loin, consultez par exemple ce tutoriel : http://cyberzoide.developpez.com/php4/mysql/
Dans phpMyAdmin :
· cliquez sur l’onglet Bases de données et créer une nouvelle base nommée blogisn par exemple.
[image:]
· Sélectionnez (en cliquant) votre base dans la liste de toutes les bases
[image:]
· Créez maintenant une table que l’on nommera billets avec 6 colonnes et cliquez sur exécuter. Ces 6 colonnes apparaîtront alors sous forme de 6 lignes qu’il vous faudra remplir comme suit :
· La première sera nommée id : contiendra un identifiant unique pour chaque billet. Généralement un entier int 6 auto-incrémenté, c’est-à-dire qu’il vous faudra cocher la colonne A_I
· titre : une chaine varchar de 100
· auteur : une chaine varchar de 100
· categorie : une chaine varchar de 100
· date : un champ de type datetime
· contenu : un champ de type text
Utiliser l’ascenseur horizontal pour voir toutes les propriétés de chaque ligne en particulier la colonne A_I :
[image:]
Enregistrez en cliquant sur sauvegarder.
Maintenant, il faut définir l’id comme clé primaire en effectuant les manipulations suivantes :
[image:]

De cette manière, on spécifie que notre table va pouvoir être indexée sur ce champ afin d’en accélérer les requêtes. Il est possible d’indexer d’autres champs que la clé primaire, pour cela reportez-vous à cette page par exemple : http://sql.toutestfacile.com/maitriser_les_bases_de_donnees/cle_primaire_et_index_sql_1.php5
Le typage et la taille de vos champs est capital ! Un choix adapté favorisera la rapidité de traitement et optimisera la taille de votre base de données. Sur ce sujet vous pouvez lire : http://www.vulgarisation-informatique.com/mysql-types-donnees.php
Il vous reste maintenant à insérer plusieurs échantillons de valeurs dans votre table afin de pouvoir la tester convenablement. Cela se passe dans l’onglet insérer cependant si vous manipulez un petit peu le langage SQL, vous pouvez utiliser l’onglet SQL pour exécuter une requête d’insertion :
[image:]
Si le petit exemple à fonctionné, vous pouvez faire un copier-coller de la requête ci-dessous qui va peupler un peu plus densément notre table billets :
INSERT INTO `billets` (`titre`, `auteur`, `categorie`, `date`, `contenu`) VALUES
('Les feuilles de style', 'Marc Andreessen', 'css', '2012-06-18 16:17:13', '<p>Le concept de feuille de style est présent dès l''origine du World Wide Web : le premier navigateur web (« WorldWideWeb », renommé par la suite « Nexus ») permet de mettre en forme les documents à l''aide de ce qui serait aujourd''hui considéré comme une « feuille de style utilisateur »^{[1]}. De même, les navigateurs Viola en 1992 et Harmony en 1993 recourent à un mécanisme similaire permettant de déterminer le rendu des polices de caractères, des couleurs ou de l''alignement du texte.</p>'),
('Le javascript', 'Brendan Eich', 'Programmation', '2012-04-11 12:27:18', '<p>JavaScript est un langage de programmation de scripts principalement utilisé dans les pages web interactives mais aussi côté serveur^{[1]}. C''est un langage orienté objet à prototype, c''est-à-dire que les bases du langage et ses principales interfaces sont fournies par des objets qui ne sont pas des instances de classes, mais qui sont chacun équipés de constructeurs permettant de créer leurs propriétés, et notamment une propriété de prototypage qui permet d''en créer des objets héritiers personnalisés.</p>'),
('Le php', 'Rasmus Lerdorf', 'Programmation', '2012-05-09 14:26:13', '<p>Le <dfn>PHP: Hypertext Preprocessor</dfn>^{[3]}, plus connu sous son sigle <dfn>PHP</dfn>, est un langage de scripts libre^{[4]} principalement utilisé pour produire des pages Web dynamiques via un serveur HTTP^{[3]}, mais pouvant également fonctionner comme n''importe quel langage interprété de façon locale, en exécutant les programmes en ligne de commande. PHP est un langage impératif disposant depuis la version 5 de fonctionnalités de modèle objet complètes^{[5]}. En raison de la richesse de sa bibliothèque, on désigne parfois PHP comme une plate-forme plus qu''un simple langage.</p>'),
('Le SGBD Mysql', 'Brendan Eich', 'SGBD', '2012-04-10 10:34:18', '<p>MySQL est un système de gestion de base de données (SGBD). Selon le type d''application, sa licence est libre ou propriétaire. Il fait partie des logiciels de gestion de base de données les plus utilisés au monde, autant par le grand public (applications web principalement) que par des professionnels, en concurrence avec Oracle, Informix et Microsoft SQL Server.</p>'),
('L''ajax (Asynchronous JavaScript and XML)', 'Rasmus Lerdorf', 'Programmation', '2012-03-05 13:20:19', '<p>En informatique, et plus particulièrement en architecture informatique, Ajax (acronyme d''<i>Asynchronous Javascript and XML</i>) est une manière de construire des applications Web et des sites web dynamiques basés sur diverses technologies Web ajoutées aux navigateurs dès 1995.</p>'),
('HTML', 'Dan Connolly', 'html', '2012-06-20 08:16:10', '<p>L’<i>Hypertext Markup Language</i>, généralement abrégé HTML, est le format de données conçu pour représenter les pages web. C’est un langage de balisage qui permet d’écrire de l’hypertexte, d’où son nom. HTML permet également de structurer sémantiquement et de mettre en forme le contenu des pages, d’inclure des ressources multimédias dont des images, des formulaires de saisie, et des éléments programmables tels que des <i>applets</i>. Il permet de créer des documents interopérables avec des équipements très variés de manière conforme aux exigences de l’accessibilité du web. Il est souvent utilisé conjointement avec des langages de programmation (JavaScript) et des formats de présentation (feuilles de style en cascade). HTML est initialement dérivé du <i>Standard Generalized Markup Language</i> (SGML).</p>');
[bookmark: _Toc386200706]Test de requêtes
Avec ce panel de données, nous pouvons effectuer une première requête afin de visualiser ce que l’on pourrait avoir dans notre programme. Par exemple la liste des articles classés par ordre antéchronologique (principe du blog) ; tapez dans l’onglet SQL puis exécutez :
SELECT
	id,
	titre,
	auteur,
	categorie,
	date,
	contenu
FROM
	billets
ORDER BY
	date DESC;
Autrement dit : « sélectionne les champs id, titre, auteur, categorie, date et contenu de tous les billets et classes-les par date descendante (mot clé DESC, le contraire étant ASC, ascendant) »
Maintenant si l’on ne veut que les articles de l’auteur Brendan Eich (ou autre suivant les données que vous avez insérées), on ajoute une condition avec la clause WHERE :
SELECT
	id,
	titre,
	auteur,
	categorie,
	date,
	contenu
FROM
	billets
WHERE
	auteur = 'Brendan Eich'
ORDER BY
	date DESC;
Gardons cette requête mais précisons que nous voulons :
· soit tous les billets des auteurs Brendan Eich et Rasmus Lerdorf
· et parmi les billets répondant à ce premier critère, prendre les billets ayant comme catégorie css
SELECT
	id,
	titre,
	auteur,
	categorie,
	date,
	contenu
FROM
	billets
WHERE
	(auteur = 'Brendan Eich' OR auteur = 'Rasmus Lerdorf')
	AND
	categorie = 'css'
ORDER BY
	date DESC;
Notre base de données est prête, nous allons maintenant voir comment récupérer ces données dans notre programme pour les afficher. Cette mission peut être assurée par des langages serveurs dont PHP fait partie.
[bookmark: _Toc386200707]Le php
ATTENTION : nous sommes dans la partie « serveur » du support ! Si vous aviez pris l’habitude de tapez l’adresse file:///D:/FORMATION_ISN/www/index.html dans votre navigateur ou d’ouvrir ce fichier par fichier > ouvrir ou encore de faire glisser le fichier dans la page du navigateur, cela ne fonctionnera plus !
Vous devez impérativement taper l’adresse de votre serveur, http://localhost dans notre exemple.
[bookmark: _Toc386200708]Présentation
Le PHP: Hypertext Preprocessor3, plus connu sous son sigle PHP, est un langage de scripts libre4 principalement utilisé pour produire des pages Web dynamiques via un serveur HTTP3, mais pouvant également fonctionner comme n'importe quel langage interprété de façon locale, en exécutant les programmes en ligne de commande. PHP est un langage impératif disposant depuis la version 5 de fonctionnalités de modèle objet complètes5. En raison de la richesse de sa bibliothèque, on désigne parfois PHP comme une plate-forme plus qu'un simple langage.
[Source : Wikipédia =>http://fr.wikipedia.org/wiki/Php]
Avant de commencer, vous devez impérativement comprendre que le code PHP que vous insérerez dans vos pages sera traité sur le serveur web avant que le résultat sous forme de contenu HTML ne soit renvoyé au navigateur.
Le navigateur n’aura jamais connaissance du traitement qui aura généré le résultat qu’il doit afficher.
Par exemple, si le navigateur doit afficher dans une page le html suivant :
<p>8</p>
Il ne peut pas savoir si dans le fichier php on avait (tous afficheront la même chose) :
· soit <?php echo "<p>8</p>"; ?>
· soit <?php echo "<p>".(4+4)."</p>"; ?>
· soit <p><?php echo "8"; ?></p>
· soit <p>8</p>
· soit <p><?php $n = 1; for($i=1;$i<8;$i++) { $n++; } echo $n; ?></p>
· …

En ce sens, son fonctionnement est à l’opposé de Javascript qui lui est interprété par le navigateur.
Si vous souhaitez aller plus loin avec php, n’hésitez pas à consulter ce tutoriel pour débutant : http://www.commentcamarche.net/contents/php/
Ou encore cette documentation très complète : http://www.php.net/manual/fr/
[bookmark: _Toc386200709]Nommage des pages
Pour que le serveur Apache sache qu’il doit appeler le module PHP afin de traiter éventuellement du code, il doit identifier les pages PHP ; c’est l’extension de nos fichiers qui va le lui permettre.
Les fichiers avec l’extension .php – si elles contiennent du code PHP – peuvent également contenir du html et même ne contenir que du html. Ainsi, le code PHP doit toujours se trouver entre les balises <?php et ?>.
Voici un exemple de contenu d’un fichier .php (vous pouvez effectuer ces tests dans un fichier que vous nommerez par exemple test.php dans www et auquel vous accéderez par http://localhost/test.php) :
<?php
echo "<p>Je suis du texte.</p>";
echo "<p>Je peux aussi faire des calculs : ".(4+4)."</p>";
?>
Vous pourrez constater dans les outils de développement que si on ne précise pas la structure HTML de base dans le fichier PHP, c’est le serveur WEB qui se charge de le faire en insérant le résultat dans une structure hyper-minimale :
<html>
<head></head>
<body>
<p>Je suis du texte.</p>
<p>Je peux aussi faire des calculs : 8</p>
</body>
</html>
Ainsi en mixant le HTML et le PHP un fichier PHP peut contenir :
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Formation ISN</title>
</head>
<body>
<div class='wrapper'>
	<?php
	// voici un exemple d'insertion de code php
	echo "<p>2+2 font : ".(2+2)."</p>";
	?>
	<div id='header'>
		<div id='logo'>
			<h1>

</h1>
			<div class='description'>Formation des enseignants</div>
		</div>
	</div>
</div>
</body>
</html>
Ainsi cette page sera interprétée par le serveur web (via le module PHP) avant d’être renvoyé au navigateur sous forme de page html. Dans ce cas-là, le navigateur recevra :
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Formation ISN</title>
</head>
<body>
<div class='wrapper'>
	<p>2+2 font : 4</p>
	<div id='header'>
		<div id='logo'>
			<h1>

</h1>
			<div class='description'>Formation des enseignants</div>
		</div>
	</div>
</div>
</body>
</html>
Ce mélange n’est pas simple à appréhender ! Il l’est encore moins lorsque l’on sait qu’un contenu comme celui-ci fonctionne :
<?php
// je suis un bloc d'instruction PHP effectuant une boucle
for($i=1;$i<6;$i++)
{
?>

<p>
	Je suis un paragraphe HTML qui va s'afficher 5 fois
	car je suis imbriqué dans une boucle PHP !
	<?php
	// je suis une opération PHP imbriquée dans un paragraphe html
	echo $i." fois !";
	?>
</p>

<?php
// je suis la fin de la boucle PHP
}
?>
Prenez le temps de bien comprendre ce dernier exemple, c’est essentiel dans la logique que vous devez acquérir pour bien manipuler ce langage !
[bookmark: _Toc386200710]Quelques règles de syntaxe
· En PHP – comme en JavaScript et beaucoup d’autres langages – chaque instruction doit se terminer par un point-virgule.
· Les variables sont toujours précédées d’un $ et doivent toujours commencer par une lettre mais il n’est pas nécessaire de les « typer » (de leur assigner un type : numérique, chaine de caractère, etc.).
· Pour concaténer une variable avec une chaine de caractère, on utilise le point, le + définissant l’opérateur arithmétique d’addition :

$mavariable = "du texte et ".$contenuautrevariable;

· Pour entourer une chaine de caractère, vous pouvez utiliser les guillemets ou l’apostrophe mais attention cependant :
· Il est possible d’utiliser des variables directement dans des chaines sans avoir à les concaténer et cette possibilité ne fonctionnera qu’avec les guillemets
· Pour bien comprendre, testez cet exemple dans votre page de test :

<?php
$unevariable = "des chats";
echo "avec guillemets sans concaténation : les chiens ne font pas $unevariable";
echo "
";
echo "avec guillemets et concaténation : les chiens ne font pas " . $unevariable;
echo "
";
echo 'avec apostrophe sans concaténation : les chiens ne font pas $unevariable';
echo "
";
echo 'avec apostrophe et concaténation : les chiens ne font pas ' . $unevariable;
?>

Comme dans tous les langages, pour les variables, les instructions, les fonctions, etc. évitez d’utiliser les accents et les caractères spéciaux sauf le underscore _.
L’instruction echo permet d’envoyer un affichage vers la page html. Elle peut évidemment contenir du code html (ici la balise <p>) :
<?php
// voici un exemple d'insertion de code php
echo "<p>2+2 font : ".(2+2)."</p>";
?>
Voici pour les bases. Comme nous ne pouvons pas aborder la syntaxe et les spécificités du langage, reportez-vous aux liens cités en début de chapitre pour apprendre :
· les tableaux
· les opérateurs
· les structures conditionnelles
· etc
Retenons une seule chose concernant les opérateurs qui bien souvent est source d’erreur : l’opérateur d’affectation = est différent de l’opérateur d’égalité == !
Ainsi lorsqu’on affecte une valeur à une variable, on écrira :
<?php
$mavariable = "ce texte";
?>
Mais pour tester qu’une variable est égale à quelque chose, on écrira :
<?php
// si $mavariable est égale à "ce texte" alors
// afficher "le test est correct !"
if($mavariable == "ce texte") {
		
	echo "le test est correct !";
		
}
?>
[bookmark: _Toc386200711]Application à notre exemple
[bookmark: _Toc386200712]Affichage de la liste des billets
Commencez par renommer le fichier D:\FORMATION_ISN\UniServer\www\formation\index.html en D:\FORMATION_ISN\UniServer\www\formation\index.php.
Dans ce fichier, dans la div identifiée header, modifier la cible – l’attribut href donc - des 3 premiers liens de cette façon :
<div id='header'>
	<div id='logo'>
		<h1></h1>
		<div class='description'>…</div>
	</div>
	<ul id='main-nav'>
		accueil
		écrire

Aller sur http://localhost/index.php et constatez que votre page s’affiche exactement comme à la fin du chapitre sur le JavaScript.
Essayez de déterminer à quel endroit de notre page html vous allez avoir besoin de PHP… Les données du #header et du #footer étant statiques le html suffit, par contre la partie centrale accueillera des données dynamiques que nous irons chercher dans la base de données (la liste des billets), c’est donc ici que notre script interviendra.
On va donc effacer tout le contenu présent entre <div class='contents'>…</div> tout en gardant la balise <div=’contents’>. Votre fichier devrait maintenant contenir quelque chose comme ça :
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Formation ISN</title>

<link href="css/styles.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="js/scripts.js"></script>

</head>

<body>

<div class='wrapper'>
	
	<div id='header'>
		<div id='logo'>
			<h1></h1>
			<div class='description'>Formation des enseignants d'informatique - module C5</div>
		</div>
		<ul id='main-nav'>
			accueil
			écrire
			catégories
			contact
		
	</div>

	<div id='content'>
		<div class='contents'>
			PARTIE EFFACÉE	
		</div>
		<div id='sidebar'>
			<h3>Liste des catégories</h3>
			
				catégorie 1
				catégorie 2
			
		</div>
	</div>
	
</div>

<div id='footer'>
	<div class="wrapper">
		<h2>A propos</h2>
		<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. In non sapien orci. Nulla facilisi.</p>
	</div>
</div>

</body>
</html>
Nous utiliserons dans notre exemple l’extension PHP MySQLi. Le i comme improved signifiant amélioré.
En effet les fonctions intégrées à PHP qui jusqu’à présent permettaient d’accéder à un serveur MySQL sont désormais dépréciées et seront bientôt supprimé de PHP.
On considère désormais que l’accès à un serveur de base de données, quelque qu’il soit ne doit pas dépendre de fonctions intégrées au cœur de PHP.
Beaucoup d’extensions sont fournies d’office (comme MySQLi) dans la plupart des modules PHP associés au serveur Apache, nous n’avons donc rien à paramétrer de ce côté-là.
Par contre l’accès au serveur MySQL se fait toujours via un utilisateur et son mot de passe. Notre script php se servira de l’utilisateur « root » auquel nous devons attribuer un mot de passe. Pour se faire, dans l’interface de configuration d’UniServer, cliquez sur « configuration du serveur » puis une fois qu’une deuxième fenêtre est ouverte (peut être long) sur « MySQL » et « changer le mot de passe ».
Rentrer votre mot de passe souhaité et validez en cliquant sur « Changer le mot de passe ». Attention, vous devrez reporter ce mot de passe dans toutes les portions de code PHP qui y font appel …
[image:]
Tout en haut du fichier, entre les balises PHP <?php et ?>, écrivons les instructions qui vont permettre à PHP de se connecter à notre base de données (dans l’absolu, chaque instruction devrait être placée dans une variable qui serait testée avant de passer à l’instruction suivante).

<?php
// on définit les 3 informations nécessaires à la connection
// à une base de données

$hote = 'localhost'; // le serveur sur laquelle elle est présente
					// ici il s'agit du même, donc localhost
$utilisateur = 'root'; // l'utilisateur qui à les droits d'accès
						// à la base
$motdepasse = 'root'; // mot de passe à l'utilisateur principal
$db = 'blogisn';

// on créé un nouvel objet MySQLi. Si l'objet est valide une connexion Mysql est établie
$mysqli = new mysqli($hote, $utilisateur, $motdepasse, $db);

// si on a une erreur de connexion, on l'affiche
if ($mysqli->connect_errno) {

	echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

// sinon on continu le traitement
} else {

Essayez de changer une des valeurs des variables ci-dessus pour constater qu’une erreur sera alors générée.

Maintenant ajoutez à cela l’exécution d’une première requête SQL :

// on sélectionne une base de données
mysql_select_db('blogisn');

	// on prépare notre requête SQL
	$sql = "SELECT
		id,
		titre,
		auteur,
		categorie,
		date,
		contenu
	FROM
		billets
	ORDER BY
		date DESC;
	";

	// on l'exécute
	$requete = $mysqli->query($sql);

Si jusqu’ici, il n’y a pas d’erreur, on possède alors dans notre variable $requete un « objet » contenant les résultats de la requête SQL envoyé au serveur MySQL.
Si notre objet n’est pas « vide », il nous reste à le transformer sous forme de tableau multidimensionnel afin de pouvoir en parcourir toutes les lignes et d’afficher les champs de la table aux bons endroits.

// si la requete n'a pas renvoyée d'erreur ET (noté &&) si on a au moins un résultat
	if($requete && $requete->num_rows > 0) {
		
		// démarrons une boucle sur tous résultats renvoyés
		while ($lesresultats = $requete->fetch_assoc()) {
		
		// à chaque passage de la boucle notre variable
		// $lesresultats contient un tableau indexé sur
		// les noms de champs de la table.
		// Fermons notre balise php pour réécrire le
		// bloc html qui était présent dans notre fichier
		// index.html
		?>
			<div class="entry">
				<div class="date">
					<div class="jour">02</div>
					<div class="mois">Sep</div>
					<div class="annee">2012</div>
				</div>
				<div class='post'>
					<h2>Mon premier billet</h2>
					<div class='author'>par Jean Durand</div>
					<div class='entry'>
						<p>Sed molestie purus in sapien tempus semper. Pellentesque ut eros eget justo ultrices sollicitudin.
						Maecenas adipiscing semper ante, a tempor orci rhoncus eu. Proin sed risus eros, nec pellentesque lorem.</p>
					</div>
				</div>
			</div>
		<?php	
	}
 }

// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
$mysqli->close();

}
?>

Il nous reste à remplacer toutes les parties du texte qui sont dynamiques de cette manière :

<div class="entry">
	<div class="date">
		<div class="jour">
<?php echo date("d", strtotime($lesresultats['date'])); ?>
</div>
		<div class="mois">
<?php echo date("M", strtotime($lesresultats['date'])); ?>
</div>
		<div class="annee">
<?php echo date("Y", strtotime($lesresultats['date'])); ?>
</div>
</div>
	<div class='post'>
		<h2><?php echo $lesresultats['titre']; ?></h2>
		<div class='author'>par
<?php echo $lesresultats['auteur']; ?>
</div>
		<div class='entry'><?php echo $lesresultats['contenu']; ?></div>
	</div>
</div>

On ne s’attardera pas sur le fonctionnement de la fonction date de PHP et pas plus sur la méthode qui nous permettrait de convertir automatiquement les noms de mois en français. Pour cela consultez l’API : http://php.net/manual/fr/function.date.php

Par contre, essayons de comprendre pourquoi notre affichage contient une multitude de point d’interrogation ?
Il s’agit en fait d’un problème d’encodage, une problématique récurrente en programmation lorsque qu’on utilise une langue accentuée comme l’est le français. Pour bien comprendre de quoi il s’agit, lisez par exemple cette page : http://fr.wikipedia.org/wiki/Codage_de_caract%C3%A8res

Dans notre exemple, le problème vient du fait que notre page html est encodée d’une certaine manière alors que notre base de données l’est d’une autre.
Il est largement conseillé de nos jours d’utiliser la norme d’encodage internationale UTF-8 pour toutes les couches du développement web.

Si on regarde la description de notre document html contenu dans son entête :

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

On constate que notre charset est bien UTF-8, le problème vient donc probablement de la base de données qui par défaut (puisqu’on ne l’a pas précisé est encodée en latin1, équivalent de iso-8859-1).
Le changement à faire sur la base étant quelque peu compliqué, nous choisirons exceptionnellement de changer l’encodage de la page html. Pour ce faire, il faut d’abord remplacer la déclaration de charset par :

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

Puis d’encoder le fichier lui-même en :
· parcourant le menu de Notepad++ : encodage > convertir en ANSI
· sauvegarder le fichier (Ctrl + S).
[bookmark: _Toc386200713]Affichage de la liste des catégories
Les notions vues précédemment vont nous permettre d’afficher la liste des catégories dans la barre de droite. On remplace :

	catégorie 1
	catégorie 2

Par :

<?php
// on définit les 3 informations nécessaires à la connection
// à une base de données

$hote = 'localhost'; // le serveur sur laquelle elle est présente
					// ici il s'agit du même, donc localhost
$utilisateur = 'root'; // l'utilisateur qui à les droits d'accès
						// à la base
$motdepasse = 'root'; // mot de passe à l'utilisateur principal
$db = 'blogisn';

// on créé un nouvel objet MySQLi. Si l'objet est valide une connexion Mysql est établie
$mysqli = new mysqli($hote, $utilisateur, $motdepasse, $db);

// si on a une erreur de connexion, on l'affiche
if ($mysqli->connect_errno) {

	echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

// sinon on continu le traitement
} else {

	// on prépare notre requête SQL
	$sql = "SELECT
		DISTINCT categorie
	FROM
		billets
	";

	// on l'exécute
	$requete = $mysqli->query($sql);

	// si la requete n'a pas renvoyée d'erreur ET (noté &&) si on a au moins un résultat
	if($requete && $requete->num_rows > 0) {

		// démarrons une boucle sur tous résultats renvoyés
		while ($lesresultats = $requete->fetch_assoc()) {
			echo "".$lesresultats['categorie']."";
		}
	}
	

	// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
	$mysqli->close();
}
?>

C’est parfait mais ne le serait-ce pas encore plus si les catégories devenaient cliquables et que ce lien affiche la même page en ne listant que les billets de cette catégorie ?

Pour commencer créez les liens dynamiquement (c’est toute la force de PHP) en passant à l’url cible un paramètre que vous nommerez categorie. Le passage d’url est normé et doit toujours être écrit ainsi :
http://monsite.fr/monfichiercible.php?mapremierevariable=mapremierevaleur&madeuxiemevariable=madeuxiemevaleur

Remplacez l’instruction echo présente dans la boucle while par :

echo "".$lesresultats['categorie']."";

Il faut maintenant modifier la requête qui génère la liste des billets en début de fichier afin qu’elle affiche seulement les billets d’une catégorie précise si jamais le programme rencontre notre paramètre dans l’url.
Nous utiliserons pour cela la variable prédéfinie (http://php.net/manual/fr/reserved.variables.php) $_GET en spécifiant que si cette variable contient le paramètre catégorie alors la requête prendra une autre forme, à savoir :

// on prépare notre requête SQL
$sql = "SELECT
	id,
	titre,
	auteur,
	categorie,
	date,
	contenu
FROM
	billets
ORDER BY
	date DESC;
";

	// si l'utilisateur à demandé l'affichage des billets d'une catégorie précise
	// la requête change. Le contenu de la variable $sql est écrasé
	if(isset($_GET['categorie']) && $_GET['categorie']!='') {

		$sql = "SELECT
			id,
			titre,
			auteur,
			categorie,
			date,
			contenu
		FROM
			billets
		WHERE
			categorie = '".$_GET['categorie']."'
		ORDER BY
			date DESC;
		";
	}

De la même manière on pourrait n’afficher que les billets d’un auteur précis, etc. Nous nous arrêterons là pour le survol de PHP dans sa fonction d’affichage des données.

Notez qu’à chaque fois que l’on a ouvert une connexion au serveur MySQL, on l’a fermée plus loin à l’aide de :

// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
$mysqli->close();
?>

Dans la mesure du possible, essayez de ne pas oublier l’instruction de fermeture afin de libérer les ressources sur le serveur MySQL.
[bookmark: _Toc386200714]Insertion de données
Le dernier chapitre de cette formation va vous donner un aperçu de la méthodologie à mettre en œuvre pour insérer des données dans la table d’une base de données à partir un formulaire html.

Vous utiliserez toutes les notions vues précédemment, à savoir :

· la création du formulaire en HTML
· le style de ce dernier avec les CSS
· du JavaScript pour contrôler les données envoyées côté navigateur
· du PHP pour contrôler les données côté serveur
· du PHP pour insérer les données dans la base

Commencez par dupliquer notre fichier index.php en ecrire.php. Ouvrez ce dernier et supprimez le code présent à l’intérieur de la balise <div class='contents'>. Insérez un formulaire de saisie à l’aide des balises <form> et <input>. Votre fichier devrait alors ressembler à ça :

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Formation ISN</title>

<link href="css/styles.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="js/scripts.js"></script>

</head>

<body>

<div class='wrapper'>
	
	<div id='header'>
		<div id='logo'>
			<h1></h1>
			<div class='description'>Formation des enseignants d'informatique - module C5</div>
		</div>
		<ul id='main-nav'>
			accueil
			écrire
			catégories
			contact
		
	</div>

	<div id='content'>
		<div class='contents'>
		
<form id='ecrireunbillet' name='ecrireunbillet' method='post' action='ecrire.php'>
	
	<h1>Ecrire un article</h1>
	
	<label for='titreid'>Titre :</label>
	<input type='text' name='titre' id='titreid' maxlength='100' />
	

	<label for='auteurid'>Auteur :</label>
	<input type='text' name='auteur' id='auteurid' maxlength='100' />
	

	<label for='categorieid'>Catégorie :</label>
	<input type='text' name='categorie' id='categorieid' maxlength='100' />
	

	<label for='contenuid'>Contenu :</label>
	<textarea name='contenu' id='contenuid' cols='50' rows='12'></textarea>
	

	<input type='submit' value='valider' />
	
</form>
		
		</div>
		<div id='sidebar'>
			<h3>Liste des catégories</h3>

<?php
// on définit les 3 informations nécessaires à la connection
// à une base de données

$hote = 'localhost'; // le serveur sur laquelle elle est présente
					// ici il s'agit du même, donc localhost
$utilisateur = 'root'; // l'utilisateur qui à les droits d'accès
						// à la base
$motdepasse = ''; // mot de passe à l'utilisateur principal
$db = 'blogisn';

// on créé un nouvel objet MySQLi. Si l'objet est valide une connexion Mysql est établie
$mysqli = new mysqli($hote, $utilisateur, $motdepasse, $db);

// si on a une erreur de connexion, on l'affiche
if ($mysqli->connect_errno) {

	echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

// sinon on continu le traitement
} else {

	// on prépare notre requête SQL
	$sql = "SELECT
		DISTINCT categorie
	FROM
		billets
	";

	// on l'exécute
	$requete = $mysqli->query($sql);

	// si la requete n'a pas renvoyée d'erreur ET (noté &&) si on a au moins un résultat
	if($requete && $requete->num_rows > 0) {

		// démarrons une boucle sur tous résultats renvoyés
		while ($lesresultats = $requete->fetch_assoc()) {
			echo "".$lesresultats['categorie']."";
		}
	}
	

	// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
	$mysqli->close();
}
?>

		</div>
	</div>

	
</div>

<div id='footer'>
	<div class="wrapper">
		<h2>A propos</h2>
		<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. In non sapien orci. Nulla facilisi.</p>
	</div>
</div>

</body>
</html>

Remarquez que l’on donne à l’attribut method du formulaire la valeur post (on aurait pu aussi choisir get, voir http://www.xul.fr/ecmascript/get-post.php).
On précise également vers quel fichier le formulaire sera envoyé (quel fichier php traitera les données du formulaire) à l’aide de l’attribut action ; dans notre cas, il s’agit de lui-même soit ecrire.php bien qu’on aurait aussi pu écrire :

<form id='ecrireunbillet' name='ecrireunbillet' method='post' action='<?php echo $_SERVER['PHP_SELF']; ?>'>

à l’aide de la variable PHP prédéfinie $_SERVER.

Passons à la présentation de l’ensemble et insérons dans notre fichier styles.css :

#ecrireunbillet {
	margin-left: 70px;
}
#ecrireunbillet label {
	display: block;
	width: 100px;
	float: left;
}
#ecrireunbillet input[type=text] {
	width: 250px;
}

Nous allons maintenant écrire un petit script en jQuery pour vérifier que nos données envoyées sont correctes.
Si ce n’est pas le cas, le script « bloquera » l’envoi du formulaire. On utilisera à cette fin l’attribut onsubmit dédié à la balise <form> qui renverra (mot clé return) via l’appel d’une fonction soit la valeur true soit false car c’est ce qui est attendu par l’événement.

Voici pour la partie HTML :

<form id='ecrireunbillet' name='ecrireunbillet' method='post' action='ecrire.php' onsubmit='return verificationFormulaire()'>

Et le javascript dans notre fichier scripts.js :

function verificationFormulaire() {

	var erreur = 0, erreurAffichage = "";
	
	// on teste que tous les champs ont été remplis
	// si non, on stocke un texte particulier
	if($('#titreid').val() == "") {
		erreur = 1;
		erreurAffichage += "- le titre\n";
	}
	if($('#auteurid').val() == "") {
		erreur = 1;
		erreurAffichage += "- l'auteur\n";
	}
	if($('#categorieid').val() == "") {
		erreur = 1;
		erreurAffichage += "- la catégorie\n";
	}
	if($('#contenuid').val() == "") {
		erreur = 1;
		erreurAffichage += "- le contenu\n";
	}
	
	// s’il y a au moins 1 erreur on affiche un message
	if(erreur) {
		alert("Les champs suivants sont obligatoires :\n\n"+erreurAffichage);
		return false;
	} else {
		return true;
	}
	
}

On pourrait largement optimiser ce script et également renforcer les contrôles effectués mais restons dans la simplicité, le but, rappelons-le, étant plutôt de comprendre la méthodologie.

A l’aide de Chrome, étudions ce qu’il se passe : rendons-nous dans l’onglet Network des outils de développement puis validons notre formulaire en oubliant volontairement un champ ; le message d’alerte s’affiche correctement et si on clique sur ok rien n’apparaît dans Network.
Notre script à l’air de fonctionner puisqu’au moment d’envoyer le formulaire (onsubmit), la fonction qui teste les champs renvoie false et bloque ce dernier.

Maintenant remplissez tous les champs et cliquez à nouveau sur Valider. Cette fois on constate dans Network que la page ecrire.php a été appelée, l’attribut action du formulaire fonctionne donc correctement.
Cliquez sur ecrire.php et constatez que vous avez accès à un ensemble d’informations qui ont été transmises avec cette requête http et en particulier la partie nommée form data qui nous montre que les valeurs de nos champs ont bien été envoyés.

De là, la méthode consiste à tester au début de notre fichier ecrire.php si la page est chargée en recevant les données d’un formulaire à l’aide de la variable prédéfinie $_POST (rappel : post a été choisi dans l’attribut method de la balise <form>) ou si elle simplement appelée par son url. Si le programme se trouve dans le premier cas, il testera la validité des champs et les insèrera dans la base de données.

Texte à copier juste après la balise ouvrante <body> :

<?php
// on teste que tous les champs ont été "postés"
// et qu'ils contiennent une valeur non-vide
if(
	isset($_POST['titre']) && $_POST['titre'] != "" &&
	isset($_POST['auteur']) && $_POST['auteur'] != "" &&
	isset($_POST['categorie']) && $_POST['categorie'] != "" &&
	isset($_POST['contenu']) && $_POST['contenu'] != ""
) {

	// on définit les 3 informations nécessaires à la connection
	// à une base de données

	$hote = 'localhost'; // le serveur sur laquelle elle est présente
						// ici il s'agit du même, donc localhost
	$utilisateur = 'root'; // l'utilisateur qui à les droits d'accès
							// à la base
	$motdepasse = 'root'; // mot de passe à l'utilisateur principal
	$db = 'blogisn';

	// on créé un nouvel objet MySQLi. Si l'objet est valide une
// connexion Mysql est établie
	$mysqli = new mysqli($hote, $utilisateur, $motdepasse, $db);

	// si on a une erreur de connexion, on l'affiche
	if ($mysqli->connect_errno) {
	
		echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

	// sinon on continu le traitement
	} else {

		// tous nos champs sont là, on peut donc préparer une requête
		// la fonction addslashes permet d'antislasher des données qui
		// contiendraient des ' qui sert de caractère d'entourage à notre
		// requête
		// la date est celle de l'instant T au format attendu par Mysql
		$sql = "INSERT INTO
					billets (titre,auteur,categorie,date,contenu)
				VALUES(
					'".addslashes($_POST['titre'])."',
					'".addslashes($_POST['auteur'])."',
					'".addslashes($_POST['categorie'])."',
					'".date("Y-m-d H:i:s")."',
					'".addslashes($_POST['contenu'])."'
)
		";
		
		$requete = $mysqli->query($sql);
		
	// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
	$mysqli->close();

}
}
?>

Et puis si la requête a fonctionné on pourrait peut-être ajouter un message qui informe l’auteur. Placez ce bout code juste avant <h1>Ecrire un article</h1> par exemple :

<?php
if(isset($requete) && $requete) {
	?>
	Votre billet a bien été posté !
	<?php
}
?>

Testez que désormais vous pouvez écrire un nouveau billet …

Nous terminerons cette formation en évoquant une fonction récurrente de PHP : l’inclusion de fichier.
Si vous observez notre fichier ecrire.php vous pouvez constater qu’au fur et à mesure de vos développements, vous avez fait appel 2 fois à la connexion au serveur MySQL :
· une fois dans le cas où on reçoit des données de notre formulaire
· une autre fois pour la liste des catégories de droite

Et cela 2 fois pour ce fichier mais aussi 2 fois pour le fichier index.php, soit 4 fois !

En php lorsque l’on a des « blocs » html ou du code récurrents, on peut l’externaliser dans un autre fichier que l’on inclura au bon endroit à chaque fois que l’on a besoin de ce bout de code ; le code contenu y sera alors « copié » comme s’il avait été tapé dans la page.

Si cette façon de faire permet de gagner du temps, le gros avantage est à chercher du côté de la logique. Par exemple si le mot de passe pour se connecter à la base de données venait à changer, vous n’auriez qu’à le modifier à un seul endroit et non à 4 endroits différents !

Créez 2 nouveaux fichiers dans votre répertoire D:\FORMATION_ISN\UniServer\www\formation :
· connexion_mysql.php
· fermeture_mysql.php

Dans le premier, copions simplement le code suivant :

<?php
	// on définit les 3 informations nécessaires à la connection
	// à une base de données

	$hote = 'localhost'; // le serveur sur laquelle elle est présente
						// ici il s'agit du même, donc localhost
	$utilisateur = 'root'; // l'utilisateur qui à les droits d'accès
							// à la base
	$motdepasse = 'root'; // mot de passe à l'utilisateur principal
	$db = 'blogisn';

	// on créé un nouvel objet MySQLi. Si l'objet est valide une connexion Mysql est établie
	$mysqli = new mysqli($hote, $utilisateur, $motdepasse, $db);
?>

Et dans le deuxième :

<?php
// IMPORTANT ! on ferme la connexion au serveur Mysql puisque nous n'en avons plus besoin
$mysqli->close();
?>

Et dans notre fichier ecrire.php, on n’a plus qu’à inclure le « bloc de connexion » contenu dans le fichier connexion_mysql.php au début après <body> et le bloc de fermeture contenu dans fermeture_mysql.php à la fin juste avant </body> par exemple :

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Formation ISN</title>

<link href="css/styles.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script type="text/javascript" src="js/scripts.js"></script>

</head>

<body>
<?php
include("connexion_mysql.php");

// on teste que tous les champs ont été "postés"
// et qu'ils contiennent une valeur non-vide
if(
	isset($_POST['titre']) && $_POST['titre'] != "" &&
	isset($_POST['auteur']) && $_POST['auteur'] != "" &&
	isset($_POST['categorie']) && $_POST['categorie'] != "" &&
	isset($_POST['contenu']) && $_POST['contenu'] != ""
) {

// si on a une erreur de connexion, on l'affiche
	if ($mysqli->connect_errno) {
	
		echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

	// sinon on continu le traitement
	} else {

		// tous nos champs sont là, on peut donc préparer une requête
		// la fonction addslashes permet d'antislasher des données qui
		// contiendraient des ' qui sert de caractère d'entourage à notre
		// requête
		// la date est celle de l'instant T au format attendu par Mysql
		$sql = "INSERT INTO
					billets (titre,auteur,categorie,date,contenu)
				VALUES(
					'".addslashes($_POST['titre'])."',
					'".addslashes($_POST['auteur'])."',
					'".addslashes($_POST['categorie'])."',
					'".date("Y-m-d H:i:s")."',
					'".addslashes($_POST['contenu'])."'
)
		";
		
		$requete = $mysqli->query($sql);
		
	}
}
?>
<div class='wrapper'>
	
	<div id='header'>
		<div id='logo'>
			<h1></h1>
			<div class='description'>Formation des enseignants d'informatique - module C5</div>
		</div>
		<ul id='main-nav'>
			accueil
			écrire
			catégories
			contact
		
	</div>

	<div id='content'>
		<div class='contents'>
		
		
<form id='ecrireunbillet' name='ecrireunbillet' method='post' action='ecrire.php' onsubmit='return verificationFormulaire()'>
	<?php
	if(isset($requete) && $requete) {
		?>
		Votre billet a bien été posté !
		<?php
	}
	?>
	<h1>Ecrire un article</h1>
	<label for='titreid'>Titre :</label> <input type='text' name='titre' id='titreid' maxlength='100' />

	<label for='auteurid'>Auteur :</label> <input type='text' name='auteur' id='auteurid' maxlength='100' />

	<label for='categorieid'>Catégorie :</label> <input type='text' name='categorie' id='categorieid' maxlength='100' />

	<label for='contenuid'>Contenu :</label> <textarea name='contenu' id='contenuid' cols='50' rows='12'></textarea>

	<input type='submit' value='valider' />
</form>
		
		</div>
		<div id='sidebar'>
			<h3>Liste des catégories</h3>

	<?php

	// si on a une erreur de connexion, on l'affiche
	if ($mysqli->connect_errno) {
	
		echo "Echec lors de la connexion à MySQL : (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

	// sinon on continu le traitement
	} else {
	
		// on prépare notre requête SQL
		$sql = "SELECT
			DISTINCT categorie
		FROM
			billets
		";

		// on l'exécute
		$requete = $mysqli->query($sql);

		// si la requete n'a pas renvoyée d'erreur ET (noté &&) si on a au moins un résultat
		if($requete && $requete->num_rows > 0) {

			// démarrons une boucle sur tous résultats renvoyés
			while ($lesresultats = $requete->fetch_assoc()) {
				echo "".$lesresultats['categorie']."";
			}
		}
		
	}
	?>

		</div>
	</div>

	
</div>

<div id='footer'>
	<div class="wrapper">
		<h2>A propos</h2>
		<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. In non sapien orci. Nulla facilisi.</p>
	</div>
</div>
<?php
include("fermeture_mysql.php");
?>
</body>
</html>

De la même manière, vous pouvez inclure les mêmes fichiers dans la page index.php.

Cette pratique est très répandue dans la gestion des sites qui possèdent un « header » et un « footer » et qu’on appellera par inclusion dans toutes les pages du site. C’est le cas dans notre exemple : les pages index.php et ecrire.php contiennent la même <div> #header qui pourrait être externalisée.

[bookmark: _Toc386200715]Comment emporter mes travaux ?
Tout ce que vous avez fait durant cette formation peut-être emporté facilement sur une clé USB.

Pour ce faire, vous devez copier le dossier D:\FORMATION_ISN sur votre clé, ce qui représentera environ 300 Mo.

Vous avez alors la possibilité de démarrer votre serveur WEB directement depuis cette clé.

Attention, cependant les bonnes pratiques informatiques préconisent de ne jamais travailler directement sur une clé ! Auquel cas, vous recopierez le dossier B:\FORMATION_ISN de votre clé sur votre ordinateur personnel par exemple.

Si vous souhaitez réduire le volume de données vous pouvez aussi ne copier que le répertoire D:\FORMATION_ISN\UniServer ce qui représentera environ 130 Mo.
Vous pourrez utiliser votre propre navigateur personnel ainsi que n’importe quel éditeur de texte pour modifier les fichiers html/php/css/js.

image1.jpg

image2.png

image3.png
s
[omeeea_my

] Ko

image4.png

image5.png
© localhost/phpmyadmin/

- T

(5 Bases dedonnées []SQL (& Fuat G Processus

B itercassement pour a comneion MySL & u_geneal_ci-

image6.png
ST

Bases de données

Ny m— —-

image7.png
= J

image8.png
A e e I e el e e i
e b is & vt danscate base

ﬂ_
i

T — L D— m

:—l:H:
E—

—

image9.png
=

 Sucure ¥ Swwcwre | []50L 4 Reche

—_— . Acion

Bcrer e nowates - e \

® [

Aucune abe i 46 voée dan

CJAcher 3 Swuetwe | [SOL A fechercher 3 Insérer (5 Exporter) Importer
Colomne Type Inerclassement Atributs Null Défout Exra

T 2tme vacha(00) o swedsh.ci Non A & Modier © Suppme
[Jouowr vacha(00) unt_swessh i Mon Aucns 2 Wostr © Supamer
5 4 categore vectai00) int_swessh i Non Aucre 2 Modier © Suppme
£ sdme deime o Aucure 2 Wostr © Supimer
[Soomeny ton lintswedshc oo Aucne & Mostr © Supiner

L T coshor ot s Pl sctin) Achr 2 oshr @ S (2 prma)

image10.png
) Aficher | 34 Snumn@ 3 Rochorchor

Exécutor une ou des requétes SQL surla bose blogisn: &

2 Exportor

) importer

¢ catogone, dae’ contens) VALUES (un

o steut et 2012

(Ostmiteur

11 Acher & nowsau reqube apeés exution

4 Opératons

Coomnes
i«
e
aou
categore

© Suvi

image11.png
[pR———
A portie du serveur MySaL

Réglage Nauveay mot de passe
Restaurer Ftat il du serveur WySQU

e
e -
S mmg S e e

