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DYNAMIQUE DES FLUIDES REELS
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Un vecteur a sera dans la suite de ce cours désigné indifféremment par a ou 
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I- Tenseur des contraintes dans un fluide visqueux

Afin d’obtenir les équations générales de l’écoulement d’un fluide visqueux, il faut établir un bilan des forces de contact s’appliquant sur un parallélépipède élémentaire.

Ces forces sont de deux types :

· de pression

· de viscosité

a- Matrice des contraintes

On pose ABCDIJKM :

· parallélépipède élémentaire

· de coté dx1, dx2, dx3
· de sommet M(x1, x2, x3)

· [image: image1.jpg]


IJKM perpendiculaire à x1
La projection sur Ox1 de la force par unité de surface appliquée sur IJKM est appelée (11.
Les projections sur Ox2 et Ox3 sont désignées respectivement par (12 et (13.

On peut adopter la même convention suivant Ox2 et Ox3.

Pour simplifier la lecture du schéma, seules les contraintes sur les facettes normales à Ox1 ont été reproduite.

On peut alors construire la matrice des contraintes Mc :
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b- Symétrie de la matrice des contraintes

On peut écrire pour une particule en mouvement le théorème du moment cinétique par rapport à un axe parallèle à Ox3 et issu du centre de gravité G de la particule :
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JGx3*(3 est le moment cinétique de la particule par rapport à Gx3.
JGx3 est le moment d’inertie de la particule par rapport à Gx3
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où ( est la masse volumique de la particule.

donc, on peut dire que
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M3 est la somme des moments par rapport à Gx3 des forces extérieures appliquées sur la particule.
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donc 
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(3 étant finie, on peut à partir de (a) affirmer que
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On peut montrer de même que suivant les deux autres axes, 
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La matrice des contraintes est donc symétrique. Cette propriété constitue en mécanique des fluides le principe de réciprocité des cissions.

c- Contrainte r(M, n) en un point M sur une facette de normale n
[image: image90.wmf])
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On pose MABC tétraèdre élémentaire :

On pose n(n1, n2, n3) le vecteur unitaire normal à la facette ABC.

Les forces superficielles étant proportionnelles aux aires des facettes, ce sont des infiniment petits d’ordre 2.

La force de volume et la quantité d’accélération sont proportionnelles au volume. Ce sont donc des infiniment petits d’ordre 3, donc négligeables par rapport aux forces superficielles.

On peut alors écrire la projection de l’équation du mouvement du tétraèdre qui se réduit à :
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  (b)

Or, la projection de l’air dS d’une facette sur un plan perpendiculaire à un axe Oxi vaut :
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donc en divisant (b) par dS, on obtient :
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En projetant l’équation du mouvement du tétraèdre fluide suivant les axes Ox2 et Ox3, on obtient des relations similaires, ce qui nous permet d’écrire :
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Les trois relations précédentes, associées au fait que n et r sont des vecteurs nous permettent d’affirmer que la matrice des contraintes Mc est la matrice d’un tenseur, le tenseur des contraintes 
[image: image16.wmf]t

:


[image: image17.wmf]33

32

31

23

22

21

13

12

11

s

s

s

s

s

s

s

s

s

=

t


Les équations (d) peuvent alors s’écrire sous la forme suivante :
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d- Tenseur des contraintes de viscosité

Le tenseur des contraintes 
[image: image19.wmf]t

 peut s’écrire sous la forme d’une somme d’un tenseur sphérique (diagonal) 
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 et d’un tenseur déviateur 
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dont la trace est nulle.
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     et     
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Dans un fluide qui n’est pas visqueux, les cissions sont nulles (
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 où p est la pression en M.

On peut donc écrire le tenseur des contraintes sous la forme :
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0n peut, pour faciliter la compréhension, décomposer le tenseur des contraintes d’un fluide visqueux en une somme composée d’un tenseur sphérique 
[image: image28.wmf]d

p

-

 et d’un tenseur classique 
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· 
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représente les contraintes de pression

· 
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 représente les contraintes de viscosité

En théorie, 
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, en pratique, on peut les confondre.

e- Résultante des forces de contact par unité de volume

La résultante R des forces de contact s’appliquant sur une surface S délimitant une partie du fluide s’écrit :
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Grâce au théorème de la divergence, ceci peut s’écrire ainsi :
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Donc, la résultante des forces de contact par unité de volume 
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En décomposant, on obtient de par l’expression de 
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 établie précédemment que,
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II- Tenseur taux de déformation

Le tenseur taux de déformation 
[image: image42.wmf]d

 a été défini comme ceci :
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On peut décomposer 
[image: image44.wmf]d

 en la somme d’un tenseur sphérique 
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 et d’un tenseur déviateur de trace nulle 
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avec, 
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  et  
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où 
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Nous pouvons maintenant établir la loi de comportement d’un fluide réel ; c’est la relation qui existe entre le tenseur des contraintes et le tenseur des taux de déformation. Pour chaque milieu continu, ces lois de comportement sont données par la physique.

III. Fluide de Stokes

Le schéma proposé par STOKES est la représentation la plus générale d'un fluide réel qui sera abordé ici. Il repose sur les hypothèses suivantes :

1° : Le tenseur des contraintes (σ    ) est une fonction continue du tenseur des taux de déformation (d   ) et de l'état thermodynamique local. Il est indépendant de la translation et de la rotation de l'élément. Ceci revient à dire que les propriétés du fluide sont identiques pour tous les observateurs, quels que soient les systèmes d'axes qui les transportent.
2°: Le fluide est entièrement dénué d'élasticité, c'est‑à‑dire qu'il n'a aucune « mémoire » du passé.

3°: Le fluide est homogène. Le tenseur des contraintes (σ    ) ne peut dépendre explicitement des coordonnées.

4°: Le fluide est isotrope, c'est‑à‑dire qu'il a les mêmes propriétés dans toutes les directions. En traduction mathématique l'hypothèse d'isotropie implique :

a) que les directions principales des contraintes et des déformations coïncident. Dans le repère principal commun nous écrirons :
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b) que la loi de comportement peut s'écrire, dans un repère principal :
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La fonction f étant symétrique par rapport aux deux dernières variables, on a :

f(a, b, c) = f(a, c, b)

5°: En l'absence de taux de déformation (d    = 0), le tenseur des contraintes (σ    ) se réduit à celui créé par une pression hydrostatique, c'est-à-dire qu'en repère principal f(d1,d2d3) = -p lorsque d1 = d2 = d3 = 0.

Remarque : Signalons que le schéma proposé par STOKES ne peut prétendre représenter l'ensemble des fluides réels. Certains corps, dits thixotropiques (exemple les silicones) présentent des anomalies : leur viscosité étant variable avec la vitesse ou avec la contrainte.

Les lois des fluides visqueux, appliquées à de tels fluides, conduisent à des résultats incohérents. Leur étude est l’objet d’une science spéciale, dite « rhéologie ».

IV Fluide Newtonien

Le fluide de NEWTON est un fluide de STOKES linéaire, c'est-à-dire que les coordonnées du tenseur des contraintes (σ    ) sont des fonctions linéaires des coordonnées du tenseur des taux de déformation (d    )

Seuls les gaz et les liquides ayant une structure chimique suffisamment simple vérifient ce schéma. Encore faut-il que les taux de déformation ne soient pas trop importants.

En repère principal, une loi de comportement linéaire s'écrit, compte tenu des hypothèses 4° et 5° du paragraphe précédent :


[image: image52.wmf]lq

m

s

+

´

=

+

di

p

i

2


μ est la viscosité dynamique, aussi appelé viscosité à la cission

λ est la viscosité de dilatation

θ est le taux de dilatation cubique

Cette fonction linéaire est en effet symétrique par rapport aux deux taux de déformation principaux autres que di; et elle se réduit à σ = - p lorsque d1=d2=d3=0

D'une façon intrinsèque, en notation tensorielle, cette relation s'écrit
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Ou encore, compte tenu de la décomposition :
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Avec le tenseur de contrainte de viscosité (σμ    )

En repère non principal, et en notation indicée, cette relation s'écrit (avec c la vitesse)
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[image: image95.wmf]d
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Ces relations constituent la loi de comportement du fluide newtonien
Ce qui nous donne 6 relations (pour i,j = 1,2,3)

Remarque : 

En décomposant le tenseur de déformation (d    ) avec le tenseur de taux de dilatation cubique (ds    ) et le tenseur de taux de déformation sans changement de volume (dδ    ), soit :
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on peut aussi écrire cette loi sous la forme :
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Ce qui montre que le tenseur des contraintes de viscosité (σμ    ) dépend à la fois du taux de dilatation cubique (ds    ) et des taux de déformation sans changement de volume (dδ    ).

 λ et μ sont les grandeurs caractéristiques des fluides, qui dépendent éventuellement de l'état thermodynamique local. On les considère généralement comme constants. Ils correspondent aux coefficients de LAME définis en élasticité.

V Pression dans un fluide visqueux newtonien. Viscosité de volume

1° Fluide au repos.

Dans un fluide au repos, le tenseur des taux de déformation (d    ) est nul et le taux de dilatation cubique θ = div (c) = 0, puisque la vitesse c = 0. La loi de comportement :
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Devient donc :
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Ou encore :
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Nous vérifions ainsi le fait que les lois de la statique des fluides s'appliquent, que le fluide soit visqueux ou non.

2° Fluide visqueux en mouvement.

(-p   ) désignant le tiers de la trace du tenseur des contraintes, écrivons l'égalité des traces des deux membres de la loi de comportement suivante définie plus haut :
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Et, compte tenu de l'équation de continuité :
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Nous obtenons :
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La viscosité de volume K est alors définie ainsi :
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a) Cas d'un fluide incompressible.

K est en général non nul, mais ρ = cte d'où p    =p, et par suite on a :

[image: image106.wmf]3

2

m

l

-

=


La pression est donc égale ( en valeur absolue ), au tiers de la trace du tenseur des contraintes (σ    ). Le tenseur des contraintes de viscosité (σμ    ) est égal au déviateur du tenseur des contraintes (σδ    ). Sa trace est donc nulle.

b) Cas d'un fluide compressible.

La théorie cinétique des gaz permet de montrer que K est nulle pour un gaz parfait. Cette hypothèse est très proche de la réalité pour les gaz mono atomiques. Elle est due à STOKES.

Elle n'est pas exacte pour les gaz poly atomiques et les liquides. Dans ce cas la pression hydrostatique p, liée aux grandeurs d'état, volume massique et température par exemple, est différente de p   .

La mesure de K ne peut être qu'approximative. Elle nécessite l'utilisation de grandes variations de masse volumique et, dans ce cas, il est douteux que les relations contraintes taux de déformation restent linéaires.

La viscosité de volume n'intervient que dans des cas très particuliers, par exemple pour expliquer l'amortissement des pulsations de volume produites par une brusque variation de pression ou l'amortissement des ondes ultrasonores.

Dans la plupart des on néglige donc la viscosité de volume, ce qui revient à prendre
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Cette hypothèse de STOKES entraîne
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et la loi de comportement d'un fluide visqueux newtonien devient,
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Cette dernière expression montre que, dans un fluide newtonien sans viscosité de volume, le tenseur des contraintes de viscosité (σμ    ) dépend uniquement des taux de déformation sans changement de volume (dδ    ).

VI Récapitulation des lois de comportement d'un fluide visqueux

Dans tous les cas nous prendrons donc comme loi de comportement d’un fluide newtonien :
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Cette loi peut être rendue plus générale et se rapprocher du fluide de STOKES en supposant que la viscosité dynamique μ est variable.

Dans le cas particulier ou μ = 0 (fluide non visqueux, ou « pascalien »), la loi devient 
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Ce qui est équivalent à
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Remarque :

En dehors des fluides, les différents milieux ont des lois de comportement très variées. Signalons les corps les plus classiques étudiés en mécanique

a) [image: image114.wmf]0
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les corps qui relèvent du domaine de la mécanique rationnelle (particules sans interaction de contact) :
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Les corps qui peuvent soit relever de la mécanique rationnelle (corps indéformables), soit de la théorie de l'élastostatique dans laquelle le tenseur des contraintes est fonction du tenseur des déformations (les déformations étant finies, bien que les taux de déformation soient nuls à l'état d'équilibre).

VII Force de viscosité par unité de masse

Avant d'écrire les équations générales du mouvement d'un fluide visqueux, il est intéressant de calculer les diverses expressions de la force de viscosité par unité de masse, selon la loi de comportement adoptée pour le fluide et suivant la nature du fluide (compressible ou incompressible).

Rappelons que la force de contact par unité de masse peut s’écrire :

[image: image116.wmf]d

m

m

s

d

2

=


Le premier terme de la somme est la force de pression par unité de masse et le second terme est la force de viscosité par unité de masse. Rappelons que dans tous les cas nous négligeons la viscosité de volume.

a) Fluide de Stokes (à viscosité variable).

En utilisant la loi de comportement :
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On obtient :
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La décomposition de (d    ) nous donne :
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De plus 
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Ce qui nous donne :
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En posant υ la viscosité cinématique du fluide
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b) Fluide newtonien compressible.
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La viscosité dynamique étant supposée constante, l'expression précédente se réduit à :

c) Fluide newtonien incompressible.

Dans ce cas 
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Ainsi 

[image: image127.jpg]



VIII Equations générales de l’écoulement d’un fluide visqueux

Démonstration sous la forme générale

Dans le cas d’un fluide visqueux, il faut tenir compte des forces de contact dues à la viscosité.

En rapportant les différents vecteurs à l’unité de masse, on obtient :
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Forces de : Volume   Pression    Viscosité   Quantité d’accélération

Pour obtenir les diverses formes de cette relation, il suffit de remplacer 
[image: image54.wmf]g
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 par son expression

Equation générales de l’écoulement d’un fluide newtonien : équation de Navier Stokes

Pour un fluide compressible on obtient :
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Et, pour un fluide newtonien incompressible :
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On rappelle que 
[image: image57.wmf]r
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 est la viscosité cinématique du fluide.

Ces équations ne sont pas linéaires et ne peuvent être intégrées que dans des cas particuliers.

Rappelons que le qualificatif « newtonien » implique une relation linéaire entre force de viscosité et dérivée des vitesses, ce qui n’est pas valable en général pour de grands gradients de vitesse ou des mouvements accélérés.

Equation linéarisée de Stokes

Quand on étudie des écoulement lents, on linéarise les équations précédentes en négligeant les termes du second ordre de la forme 
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, c'est-à-dire ceux qui proviennent de 
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Les équations linéaires s’écrivent donc :

Pour un fluide compressible :
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Pour un fluide incompressible :
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Conditions aux limites

L’intégration des équations précédentes nécessite la connaissance des équations aux limites. La condition de contact à la paroi est imposée par les forces d’attraction moléculaires : les particules fluides au contact de la paroi ont une vitesse nulle par rapport à celle-ci, ce qui équivaut aux deux conditions :

- vitesse normale à la paroi nulle, comme pour un fluide non visqueux ;

- vitesse tangentielle à la paroi nulle, alors qu’elle pouvait être quelconque pour un fluide non visqueux.

Ces deux conditions correspondent au fait que les équations de Navier sont au second ordre alors que celle des fluides non visqueux étaient au premier ordre.

Dans le cas d’un écoulement non permanent, il faut aussi tenir compte des conditions initiales.

Cas particuliers

Le lecteur vérifiera immédiatement que, dans les équations de Navier Stokes

- en faisant v = 0, on retrouve les équations d’écoulement des fluides non visqueux ;

- en faisant
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, v = 0 on obtient les équations de la statique des fluides.

Si le mouvement est rectiligne et uniforme
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Les équations sont identiques à celle de la statique des fluides et la pression varie de la même façon.

Dans un tube de courant de courbure négligeable, considérons le plan Ox1x2 normal au vecteur vitesse et au vecteur accélération.

Selon les axes Ox1 et Ox2 les équations de Navier peuvent s’écrire :
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Mais
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d’où
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Dans une section normale du tube de courant la pression varie selon la loi hydrostatique.

Equations de l’écoulement en coordonnées cylindrique 
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 les composantes de la vitesse 
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les composantes de la force de volume 
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par unité de masse.

La dérivée particulaire d’une fonction scalaire
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Le laplacien de U est
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Nous nous bornerons à donner les équations de l’écoulement pour un fluide incompressible.

1) Equation de continuité
[image: image81.wmf]0

.

=

Ñ

c

r

r

. Elle devient :
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2) Equation de Navier Stokes (par unité de masse de fluide incompressible)
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Remarque : en coordonnées cylindrique, les coordonnées du tenseur symétrique des déformations 
[image: image86.wmf]d

sont, avec des notations évidentes :

IX NOTION DE VISCOSITE

Ce qui distingue un fluide parfait d’un fluide réel, c’est la notion de viscosité. Les fluides parfaits sont utilisés dans des domaines où le nombre de Reynolds est grand. Pour des faibles nombre de Reynolds ( fluides très visqueux ou écoulements de petite dimension) la notion de viscosité est importante et non négligeable.

1 Viscosité dynamique
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Soit, dans un milieu fluide en écoulement, deux couches fluides frottant l’une sur l’autre et dS un élément de leur surface commune. L’action de contact exercée par le fluide 1 sur le fluide 2 a une composante tangentielle due à la viscosité. Elle est due à la différence de vitesse dc existant entre deux éléments fluides voisins et tendant à déformer le fluide.

Par définition de la viscosité dynamique, on pose :
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Remarque :

Cette relation est valable à la paroi qui exerce une force retardatrice sur le fluide. C’est d’ailleurs en cet endroit que les forces sont le plus souvent maximales, car le gradient de vitesse y est le plus élevé.

Le coefficient η est une grandeur caractéristique intrinsèque au fluide

La relation est valable en grandeur et en signe, à condition d’orienter le normale dans la direction du fluide dont on cherche l’action de contact sur la surface, la force étant comptée positive dans le sens de la vitesse.

Dimension de la viscosité dynamique.

η = L-1MT-1
Facteurs influant sur la viscosité

Influence de la température

* Cas des liquides

La viscosité diminue avec la température. Par exemple pour l’eau, on a :

	t (°C)
	0
	20
	60
	100

	η(x10-3)
	1.8
	1
	0.6
	0.3


* Cas des gaz

La viscosité dynamique des gaz croît avec la température d’après la loi de SUTHERLAND
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Avec T : température en K,

et K et C donnés car dépendant du fluide.

Influence de la pression

* Cas des liquides

La viscosité augmente avec la pression. Par exemple pour l’atmosphère, on a :

* Cas des gaz

La viscosité dynamique est indépendante de la pression dans la mesure où les lois des gaz parfaits sont applicables

Pour l’atmosphère ( température et pression variables), on a :

	z (km)
	0
	1
	2
	3
	4
	5
	10
	15
	20

	η (x10-3)
	0.01782
	0.01755
	0.01720
	0.01686
	0.01650
	0.01616
	0.01445
	0.01400
	0.01400

	ν (x10-6)
	14.5
	15.8
	17.1
	18.5
	20.1
	22.0
	35.0
	72.3
	159.00


2 Viscosité cinématique

La viscosité cinématique 

Dans un grand nombre de problème on voit apparaître un autre nombre, faisant intervenir la viscosité dynamique et la masse volumique. Ce nombre définit par la relation :
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ν est la viscosité cinématique.

η est la viscosité dynamique

ρ est la masse volumique

Dimension de la viscosité cinématique

ν = L2T-1
Les variations de la viscosité cinématique sont données précédemment, notamment dans l’exemple de l’atmosphère
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