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            Chapitre 24

PROPRIÉTÉS ÉNERGÉTIQUES DES GAZ 

24‑1 Énergie interne et enthalpie des gaz parfaits


24-1 Lois de Joule


L'énergie potentielle d'interaction entre les molécules est négligeable car les forces (de Van der Waals) d'interaction entre les molécules diminuent rapidement quand la distance entre elles croît et les molécules sont très espacées dans un gaz parfait. Quant aux énergies électronique et nucléaire, on peut les considérer comme constantes tant que la nature chimique et la nature nucléaire du système ne change pas. L'énergie potentielle interne est donc une constante que l'on choisira nulle.

L'énergie interne d'un gaz parfait est donc l'énergie cinétique microscopique du gaz.

Celle-ci ne dépend que de la température (température cinétique). 

Un gaz parfait suit la première loi de Joule : son énergie interne ne dépend que de la température.
L'enthalpie du gaz parfait est donc H = U + pV = U + nRT, avec U ne dépendant que de T, de même que nRT donc :

Un gaz parfait suit la deuxième loi de Joule : son enthalpie ne dépend que de la température
24-1-2 Formule de Mayer

La différence entre les deux capacités thermiques d'un gaz parfait est :
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Avec les capacités thermiques molaires, on obtient la Formule de Mayer : 
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24-1-3 Cas du gaz parfait monoatomique

Pour N molécules, Ecµ = N <(c> = 
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  donc la capacité thermique d'un gaz parfait monoatomique est  
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La capacité thermique molaire à volume constant (ou "chaleur molaire à volume constant")  est donc la même pour tout gaz parfait monoatomique : 
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La capacité thermique massique à volume constant (ou "chaleur massique à volume constant") est 
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. Elle s'exprime en J.kg–1.K–1. Elle dépend de la nature du gaz auquel est associé le gaz parfait.

On a donc aussi : 
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24-1-4 Cas des gaz parfaits diatomiques

À basse température, le mouvement d'une molécule se réduit à une translation, l'énergie cinétique de la molécule dans son référentiel barycentrique est nulle : (C* = 0  et (C = 
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 donc 
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À partir d'une certaine température, (vers 60 K pour H2), il y a deux degrés de liberté supplémentaires (rotations autour des deux axes perpendiculaires à la liaison) 
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. On a alors 
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Au delà d'une autre température (vers 7000 K pour H2) intervient en plus la vibration des deux noyaux dans l'axe de la liaison, à laquelle correspondent deux termes supplémentaires, l'un cinétique l'autre potentiel. Les capacités thermiques deviennent 
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Pour des molécules d'atomicité supérieure à 2, d'autres degrés de liberté apparaissent car il y a plusieurs types de vibration supplémentaires, CVm et Cpm sont encore plus grands et croissent avec T au fur et à mesure que les différents degrés de liberté se débloquent.


Dans tous les cas, CVm et Cpm ne dépendent, pour un gaz parfait donné, que de la température. Elles sont constantes dans des intervalles de température pas trop étendus.


24-1-5 Le coefficient (

( est le rapport des capacités thermiques : 
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La connaissance de ( pour un gaz parfait permet de calculer les capacités thermiques molaires avec la formule de Mayer : 
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Pour un gaz parfait monoatomique 
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. Pour un gaz parfait diatomique à une température habituelle 
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Pour un gaz parfait polyatomique, à certaines températures, CVm croît ainsi que Cpm en gardant une différence constante, alors 
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24-2 Cas des gaz réels


24-2-1 Équation d'état


Dans un gaz réel, les molécules s'attirent (forces de Van der Waals en 
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entre deux molécules). Ces attractions dérivent d'une énergie potentielle (en
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). Cependant, pour des distances faibles entre les molécules, il y a répulsion (les nuages électroniques ne peuvent s'interpénétrer) . 

De nombreux modèles plus ou moins valables décrivent les gaz réels. Par exemple, dans le modèle de Van der Waals, l'équation d'état s'écrit : 
[image: image32.wmf](

)

nRT

b

V

V

a

p

2

=

-

÷

ø

ö

ç

è

æ

+

 ou 
[image: image33.wmf](

)

RT

B

V

V

A

p

m

2

m

=

-

÷

÷

ø

ö

ç

ç

è

æ

+

. Dans cette formule, b est le covolume, B le covolume molaire. On peut considérer que le covolume est le volume incompressible occupé par les molécules elles-mêmes.

La pression est alors 
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est la pression interne, négative qui résulte de l'attraction entre les molécules.

24-2-2 Énergie interne et enthalpie

L'énergie interne comporte donc, en plus de l'énergie cinétique microscopique, un autre terme variable, l'énergie potentielle d'interaction entre les molécules, tendant vers zéro quand la distance moyenne entre les molécules deviennent grandes, négatif pour un gaz dilué (attraction) et positif pour un gaz très condensé (répulsion). 

La distance moyenne entre les molécules est proportionnelle à V1/3. Donc l'énergie interne comporte un terme qui dépend du volume.  
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U est donc fonction de T et de V, ou de T et de p, puisque V dépend de T et de p. Il en est donc de même pour H = U + pV. 
[image: image37.wmf]dp

p

H

dT

C

dH

T

p

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

=

.

Les capacités thermiques peuvent aussi dépendre de V (ou de p) alors que pour les gaz parfaits elles ne dépendent que de T. Il n'existe aucun résultat général, cependant, tant que le gaz est loin de ses conditions de changement d'état, cette dépendance (de V ou p) est faible et les résultats s'écartent peu de ceux des gaz parfaits.

24-3 Étude de quelques transformations particulières des gaz parfaits


On supposera que l'énergie mécanique externe est constante et que le seul travail reçu est celui des forces pressantes.

24-3-1 Compression isotherme réversible d'un gaz parfait


On considère un gaz subissant une transformation suffisamment lente pour que sa température T reste constamment égale à celle du milieu extérieur (thermostat), duquel il est séparé par une paroi diathermane.


Soit V1 son volume initial et p1 sa pression initiale. Après la compression (ou l'expansion) isotherme, son volume est V2 et sa pression p2.
Pour une compression élémentaire mécaniquement réversible, le gaz reçoit le travail élémentaire : (W = – p dV =  
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 car T est constante (loi de Boyle) et (U = 0 (loi de joule) donc W = – Q.
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24‑3-2 
Compression
adiabatique quasi statique mécaniquement réversible d'un gaz parfait, loi de Laplace


On suppose ici que les parois de l'enceinte dans laquelle se trouve le gaz sont imperméables à la chaleur : Q = 0 et (U = W.


Pour pouvoir considérer la transformation comme adiabatique, il faut qu'elle soit suffisamment rapide afin que les échanges de chaleur, à travers la paroi isolée thermiquement soient bien négligeables.


Pour que l'on puisse considérer la transformation comme quasi statique, mécaniquement réversible, il faut par contre que la transformation soit suffisamment lente pour que la pression ait le temps de s'uniformiser à chaque instant dans tout le volume du gaz.


La transformation ne doit donc être ni trop rapide ni trop lente. 

La vitesse à laquelle se propagent les variations de pression est la vitesse du son, donnée par la formule de Laplace :  vitesse du son dans un gaz parfait : 
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. Elle a des valeurs habituelles de quelques centaines de m.s–1. Pour un gaz occupant quelques dm3, la constante de temps pour l'uniformisation de la pression est donc de l'ordre de la milliseconde. Une transformation quasi statique peut donc être suffisamment rapide pour pouvoir être malgré tout considérée comme adiabatique.


On a dans ce cas : (Q = 0 donc dU = (W soit CV dT = – p dV = 
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dH = Cp dT = dU + d(pV) = – p dV + p dV + V dp =  nRT 
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Cette équation différentielle se résout facilement si ( est constant dans le domaine de température où s'effectue la transformation ; alors  
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Loi de Laplace : pour une compression adiabatique, quasi statique, mécaniquement réversible d'un gaz parfait, si ( est constant : 
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On peut en déduire, à l'aide de l'équation d'état 
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Le travail reçu, comme dans toute transformation adiabatique est W = (U = CV (T.

24-4 Formule de Reech


Le coefficient de compressibilité adiabatique quasi statique mécaniquement réversible est par définition : 
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. L'indice S signifie à entropie constante, pour l'instant, il suffit de savoir qu'il signifie aussi adiabatique quasi statique et mécaniquement réversible.
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Sur une isotherme, dT = 0 donc dU = 
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(Q = dU – (W et si une transformation est isotherme, elle ne peut qu'être très lente et donc mécaniquement réversible : (W = – p dV  et  (Q = 
[image: image60.wmf]dV

V

U

T

÷

ø

ö

ç

è

æ

¶

¶

+ p dV.


(Q = dH – d(pV) – (W = 
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Donc 
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Sur une adiabatique mécaniquement réversible , (Q = 0,  dU = CV dT + 
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Donc – CV dT = 
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dH = Cp dT + 
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Donc – Cp dT =
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En divisant (2) par (1), on obtient, pour une adiabatique mécaniquement réversible :
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 , avec (0), on obtient 
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  (II).


Avec (I) et (II), on obtient la formule de Reech : 
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 pour tout fluide.


Dans le cas d'un gaz parfait, la démonstration est bien plus facile (voir exercice).


En un point A du diagramme de Watt (p = f(V)), ou du diagramme de Clapeyron (p = f(Vm)), le rapport des coefficients directeurs de la tangente à l'adiabatique quasi statique et de la tangente à l'isotherme est (. Or ( > 1  donc l'adiabatique quasi statique est toujours plus inclinée que l'isotherme :
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La mesure de ( peut donc s'effectuer en traçant expérimentalement les isothermes et les adiabatiques. D'autres méthodes seront vues en TP et en exercice.

24-5 Cycles moteurs


24-5-1 Rendement d'un moteur thermique fonctionnant entre deux sources de chaleur


Dans ce qui suit, on néglige l'énergie cinétique liée aux courants dans le fluide et la variation d'altitude de son centre d'inertie; son énergie mécanique externe est considérée comme constante.


On s'intéresse au cas où le fluide subit une transformation cyclique qui se répète. On a donc, pour chaque cycle décrit par le fluide (U = W + Q = 0.


S'il on a affaire à un moteur thermique, le fluide fournit  du travail : W < 0 et Q > 0.


On s'intéresse à un moteur ditherme : le fluide reçoit de la chaleur de la part d'une source chaude (combustion d'un carburant dans la source chaude) et n'en transforme qu'une partie en travail cédé à l'extérieur. Il cède donc de la chaleur à la source froide (air ambiant par exemple).


On verra au chapitre suivant qu'un moteur monotherme ne peut exister.


Le rendement du moteur thermique ditherme est la fraction de la chaleur qu'il reçoit de la part de la source chaude
qui est transformée en travail.


Soit, respectivement Q1 et Q2  les transfert thermique reçu par le fluide de la part de la source froide et de la source chaude pendant un cycle : Q1 < 0 et Q2 > 0.  Soit W le travail reçu par le fluide pendant un cycle : W < 0. On a donc W + Q1 + Q2 = 0.


Rendement :
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On cherche bien sûr en pratique à avoir des rendements les plus élevés possibles, mais on verra, avec le second principe de la thermodynamique, qu'il y a une limite théorique à sa valeur.


24-5-2 Cycle de Carnot d'un gaz parfait


Un cycle de Carnot est un cycle ditherme dans lequel les transformations subies par le fluide sont réversibles.


Les échanges thermiques avec les sources de chaleur étant supposés réversibles, pendant chacune de ces transformations il y a équilibre thermique avec la source. Donc ces transformations sont isothermes.


Les échanges de chaleur n'ayant lieu qu'avec les deux sources de températures constantes et les passages d'une isotherme à l'autre étant réversibles, ces transformations ne peuvent être que des adiabatiques réversibles (en fait on peut dire quasi statiques et mécaniquement réversibles car le problème de la réversibilité thermique ne se pose pas puisqu'on suppose que le système est alors isolé thermiquement).
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Un cycle de Carnot est constitué par deux isothermes et deux adiabatiques mécaniquement réversibles.

Le travail fourni par le fluide pendant le cycle est –W = 
[image: image74.wmf]ò
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 > 0 puisqu'il s'agit d'un cycle moteur. Ce travail est représenté sur le diagramme par aire(A'ABCC') – aire(A'ADCC'). Il est positif si le cycles parcouru dans le sens négatif.


Un cycle est moteur s'il correspond à un parcours dans le sens négatif sur un diagramme de Watt p = f(V).


T2 est ici la température de la source chaude, T1 celle de la source froide.


Pour les isothermes d'un gaz parfait, (U = 0 donc les transferts thermiques sont :

Q1 = –WCD =  nRT1
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 et Q2 = –WAB =  nRT2
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  (voir 14-3-1).

Pour les adiabatiques 
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 (loi de Laplace) donc 
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 donc le rendement du cycle de Carnot d'un gaz parfait est  
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D'autres cycles seront étudiés en exercices, leurs rendements sont toujours plus faibles.

24-6 Détentes des gaz parfaits
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24-6-1 Détente de Joule-Gay Lussac


Dans une détente de Joule-Gay Lussac, Un récipient adiabatique et indéformable (indilatable) de volume V2 est formé de deux compartiments séparées par un robinet R . Initialement le gaz occupe la partie de volume V1, à la température T1 et sous la pression p1. L'autre compartiment est vide.


On ouvre R. Au bout d'un certain temps, il y a à nouveau équilibre, le gaz occupe le volume V2 à la température T2, sous la pression p2. La transformation est bien sûr irréversible.


Dans cette transformation, le système contenu dans l'enceinte (le gaz) n'a reçu ni transfert thermique ni travail des forces pressantes, ni travail d'autres forces et son énergie mécanique n'a pas varié (énergie cinétique macroscopique nulle et énergie potentielle de pesanteur constante car l'altitude de G est inchangée). Q = 0, W = 0 et (Em = 0. donc (U = 0 .


La détente de Joule-Gay Lussac est une détente à énergie interne nulle.


Si la température n'a pas varié, c'est que le gaz suit la première loi de Joule. C'est le cas pour un gaz parfait.


La détente de Joule-Gay Lussac d'un gaz parfait se fait sans variation de température.


On a donc 
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Pour les gaz réels, la température varie.


Si le gaz est sous pression assez faible, l'interaction entre ses molécules est une attraction. Les forces d'attraction produisent un travail négatif quand les molécules s'éloignent les unes des autres donc l'énergie potentielle interne du gaz augmente. Mais comme l'énergie interne ne varie pas, l'énergie cinétique microscopique diminue donc la température diminue.


Pour certains gaz comme H2 sous de fortes pressions, le résultat peut être inversé si les molécules sont assez proches pour se repousser.

[image: image97.wmf]p

V

A

B

C

D

T

2

T

1

ad. rév.

ad. rév

A'

C'

p

V

A

B

C

D

T

2

T

1

ad. rév.

ad. rév

p

V

A

B

C

D

T

2

T

1

ad. rév.

ad. rév

A'

C'


24-6-2 Détente de Joule Thomson (ou de Joule-Kelvin)

Dans un tube adiabatique et indéformable, un gaz est forcé à traverser une paroi poreuse grâce à une différence de pression : p1 > p2. On supposera qu'un régime stationnaire est établi dans le tube.

La transformation est bien sûr irréversible.

Le système (S') reçoit le travail W' = p1 V1 – p2 V2 et le transfert de chaleur Q' = 0.


Son énergie mécanique externe varie : les molécules du volume V2 ont une vitesse d'ensemble 
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(E' = W' s'écrit : U'2 – U'1+ 
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La partie (S') – (S) du système (S') qui est à cheval sur la paroi poreuse reste dans le même état (mais ce ne sont plus les mêmes molécules qui la forment). Donc pour le système (S) : (E = (E' et (U = (U'.


On a donc pour (S) : U2 – U1 +
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Si le mouvement du gaz est lent, on peut négliger sa variation d'énergie cinétique macroscopique, on a alors 
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La détente de Joule-Thomson est une détente à enthalpie constante.


Si la température n'a pas varié, c'est que le gaz suit la deuxième loi de Joule. C'est le cas pour un gaz parfait.


La détente de Joule-Thomson d'un gaz parfait se fait sans variation de température.


Pour un gaz réel le résultat dépend des conditions initiales, il ne peut y avoir refroidissement que si la température est inférieure à la "température d'inversion" et si la pression n'est pas trop grande.. Par exemple, le diazote a une température d'inversion de 625 K; pris dans les conditions habituelles il peut être refroidi par une détente de Joule-Thomson (en vue de le liquéfier) alors que le dihydrogène doit d'abord être refroidi en dessous de sa température d'inversion qui est de 202 K). 

24-7 Énergie interne et enthalpie des phases condensées


Pour les phases condensées, solides ou liquides, le volume molaire est bien plus petit que pour les gaz et pratiquement constant  (solide ou liquide peu compressible), les variations du produit pV sont en général négligeables devant celles de U.


V variant peu : dU = CV dT + 
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 et V étant petit, dH = dU + d(pV) 
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Donc H comme U ne dépend pratiquement que de T et 
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Les capacités thermiques à pression constante et à volume constant se confondent pratiquement pour les phases condensées, on ne les distinguera pas : 
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Les variations d'enthalpie et d'énergie interne sont pratiquement les mêmes : 
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24-8 Calorimétrie

24-8‑1 Détermination expérimentale des capacités thermiques massiques des solides.


On utilise la méthode des mélanges (voir TP et exercices). Le solide de masse m connue, de température ( connue est plongé dans un calorimètre, dont la capacité thermique C a été déterminée au préalable, contenant une masse m' d'eau connue à température (' connue.

La connaissance de la température (E à l'équilibre thermique permet de calculer la capacité thermique massique moyenne c du solide entre les températures θ et θE
La transformation ayant eu lieu sous pression constante et dans un calorimètre, la variation d'enthalpie est  (H = Q et Q = 0 donc (H = 0 .

Or (H = m c ((E – () + (C + m' c') ((E – (')  (H est extensive, pratiquement additive).

Il suffit donc de connaître la capacité thermique massique moyenne de l'eau c' dans l'intervalle de température considéré pour calculer c. (Voir le paragraphe suivant).

Dans la pratique, un calorimètre n'est jamais complètement adiabatique et on doit tenir compte des pertes de chaleur. Actuellement, on utilise plutôt des microcalorimètre dans lesquels au lieu d'essayer d'empêcher les pertes, on les favorise, mais en en tenant compte avec une grande précision.

24‑8‑2 Détermination expérimentale des capacités thermiques massiques des liquides et des gaz

On utilise la méthode électrique qui consiste à élever la température du liquide contenu dans un calorimètre à l'aide d'une résistance, par effet Joule

On peut aussi utiliser la méthode du courant stationnaire qui consiste à faire passer le liquide dans un tube calorifugé contenant une résistance. En régime stationnaire, la relation. entre le débit de liquide, l'élévation de température, la puissance électrique et la capacité thermique massique du liquide, permet de déterminer celle-ci.




Pour les gaz, on peut aussi utiliser la méthode du courant stationnaire, mais d'autres méthodes sont possibles.

24-8-3 Résultats concernant les capacités thermiques massiques et molaires


Pour les solides et les
liquides, on ne peut mesurer directement que cp. Il faudrait des pressions énormes pour 
empêcher la dilatation, aussi, la valeur de cV est‑elle obtenue indirectement, elle est toujours très voisine de cp.


- Pour les solides

Les capacités thermiques massiques sont très variées. mais pour les corps simples, la capacité thermique molaire, par mole d'atomes. est souvent de l'ordre de 25 J.mol–1.K–1 à des températures et des pressions ordinaires. A étant la masse molaire atomique :
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 : Règle de Dulong et Petit.

Seuls les corps simples formés d'éléments légers comme Be, B, Cdiamant , s'écartent notablement de cette règle : leurs capacités thermiques molaires atomiques sont nettement plus faibles (6,0 J.mol​–1..K–1 pour le diamant).

En fait Cm augmente avec la température. Elle tend vers 0 si la température tend vers 0, et elle tend vers une limite de l'ordre de 27 J.mol–1.K–1 aux hautes températures. Mais la croissance est moins rapide pour les éléments légers, d'où leurs capacités thermiques molaires faibles aux températures habituelles.


On notera encore que c dépend de la structure cristalline. Aussi, lors du passage d'une "variété allotropique" à une autre (Cgraphite à Cdiamant, Fe( à Fe(, Prouge (Pn) à Pblanc (P4)...), c subit une discontinuité qui permet de déceler cette "transition de phase".

- Pour les liquides

Pour l'eau, on
retiendra que l'on obtient le résultat suivant 
:
Capacité thermique massique de l'eau : c = 4 185,5 J.kg–l.K–1 entre 14,5 °C et 15,5 °C

(On utilisait autrefois comme unité de quantité de chaleur :

1 calorie = 4,1855 J
d'où  c = 1 cal.g–1.K–1 pour l'eau)

I1 n'y a pas de lois simples et les impuretés jouent un rôle important.

En général c croît avec la température, mais l'eau fait exception, sa capacité thermique massique présente un minimum pour 35 °C, de valeur 4 175,2 J.kg–1.K–1.


Au voisinage du point de fusion c est en général plus grand pour le liquide que pour le solide.

Pour de nombreux liquides c est de l'ordre de 2 kJ.kg–1.K–1 soit environ la moitié de la capacité thermique massique de l'eau. L'eau présente donc la particularité d'avoir une capacité thermique massique anormalement élevée, d'où son rôle dans la modération des climats océaniques et son utilisation comme fluide caloporteur (chauffage central, centrales nucléaires...). Cette particularité de l'eau s'explique par l'importance des liaisons hydrogène.
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