Chapitre 2 : Les ondes
I  Equations d’onde

A)  Vibrations transversales d’une corde

1)  Modélisation
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On considère une corde tendue à l’équilibre ; elle subit une perturbation.

· On néglige l’effet de la pesanteur

· On considère que la corde est unidimensionnelle, de masse linéique 
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 pour la corde tendue et au repos.
· Les actions de contact :
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On considère qu’il n’y a que la force tangentielle (
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· On néglige tout phénomène dissipatif (frottement de l’air, frottement des fibres les unes sur les autres)

2)  Petits mouvement

· Paramétrage :
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On note 
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Attention, x ne correspond pas à l’abscisse de M !

x s’appelle la variable indicielle (elle repère 
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 s’appelle la variable dynamique.
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· Vibrations transverses :
On suppose que 
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 (c'est-à-dire que 
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· Polarisation rectiligne :

On suppose que la propagation se fait uniquement selon 
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· On considère que les écarts par rapport à l’équilibre sont faibles.
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Ainsi, 
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 sont des infiniment petits du premier ordre.
Conséquence pour la tension :

On assimile le bout de fil à un ressort (déjà un peu tendu).
A l’équilibre, 
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A vide : 
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Ainsi, on considère que le fil a une raideur 
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Donc 
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Et 
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Soit 
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Donc 
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Ainsi, au premier ordre, 
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3)  Equation du mouvement

· On a une infinité de degrés de liberté.

· Application du principe fondamental de la dynamique :
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Donc d’après le théorème de la résultante dynamique :
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Soit 
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Avec 
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Projection sur x : 
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Projection sur y : 
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Mais 
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Ou 
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 : équation des cordes vibrantes.
Remarque :
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On a 
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On pose alors 
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Donc 
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Remarque 2 :

Si on avait 
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, on trouverait de la même manière :
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On a une équation aux dérivées partielles, et donc une infinité de solutions.
B)  Equations d’onde

1)  Définition

· Onde :

C’est une fonction 
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, scalaire ou vectorielle, réelle ou complexe.

· Equation d’onde :

C’est une équation aux dérivées partielles satisfaite par s.

Cette équation fait généralement intervenir 
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Une équation d’onde peut avoir une infinité de solutions.

2)  Exemples

· Equation d’onde classique ou de D’Alembert :
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Opérateur d’alembertien : 
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Ainsi, l’équation s’écrit 
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c : constante, homogène à une vitesse.

Applications :

Corde vibrante, onde électromagnétique dans le vide, ondes acoustiques.
· Equation de Klein–Gordon :
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a et c sont des constantes, a est réelle (c’est une longueur).
Applications :

Onde électromagnétique dans un plasma
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Remarque :

Ces deux premières équations d’onde décrivent des phénomènes réversibles.
· Equation des téléphonistes :
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Cette équation traduit un phénomène irréversible

· Vibration d’une poutre :

[image: image58.emf]perturbation
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· Equation de la chaleur :
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Remarque :

L’équation d’onde dépend essentiellement de la grandeur qui vibre, mais caractérise le milieu dans lequel l’onde se propage.

C)  Les ondes
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 doit satisfaire une équation d’onde et des conditions aux limites.

1)  Les ondes planes

C’est une onde telle que 
[image: image63.wmf])

,

(

)

,

(

t

x

s

t

r

s

=

r

 pour un certain paramètre x.
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L’onde a la même valeur sur tout le plan 
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 (même état vibratoire)

· Les plans 
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 équi-x s’appellent des surfaces d’onde.

· Aucune onde réelle ne peut être rigoureusement plane (Elles sont nécessairement d’extension finie)

· Une onde plane n’a de sens que pour des ondes tridimensionnelles.

2)  Ondes planes progressives

· Définition :

C’est une onde plane telle que 
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 où v est constant.

Avec 
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, on a alors 
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· Phénomène de propagation :

· Progression de l’onde :
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Justification :

Si on a le même u, on a la même valeur de s.
Et pour avoir 
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· Célérité :
(1) v : vitesse de propagation de l’onde

(2) C’est la vitesse que devrait avoir un observateur pour voir toujours le même état vibratoire :
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(3) On travaille généralement avec un 
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· Généralisation :

De façon générale, on verra qu’il y a un phénomène de propagation de l’onde dès que x et t sont couplés.

Exemples :

(1) 
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On a une onde plane (dépend uniquement de x), mais pas progressive.
Cette équation peut modéliser par exemple un amortissement.

(2) 
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On a un phénomène de propagation selon x, mais l’onde n’est pas plane. 

(3) 
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On a une onde plane, mais non progressive (stationnaire)

3)  Onde plane progressive sinusoïdale (OPPS)

Ou OPP harmonique / monochromatique en optique.

· Définition :
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Où a, 
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 sont des constantes.
Ainsi, 
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a : amplitude réelle


[image: image87.wmf]w

 : pulsation temporelle

k : pulsation spatiale
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 : déphasage/avance de phase

· Vitesse de phase :
C’est la vitesse à laquelle un observateur doit se déplacer pour voir la phase constante :


[image: image90.wmf]v

k

dt

dx

v

kx

t

=

=

=

Þ

=

+

-

Þ

=

w

j

w

f

j

cte

cte


· Notation complexe :
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Où 
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 : amplitude complexe.

· Double périodicité :

· Périodicité temporelle :


[image: image93.emf]s

t





2



T

à x fixé


· Périodicité spatiale :
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On a 
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· Evolution de l’onde :
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· Vecteur d’onde :

On a 
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On introduit 
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Pour 
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Donc 
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. Cette formule a l’avantage d’être indépendante de tout système de coordonnées qu’on a choisi, et on a ainsi une expression plus générale.

On a 
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Donc 
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4)  Décomposition d’une onde quelconque en OPPS

· Transformation de Fourier :
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Et 
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Donc 
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 est une somme (continue) d’ondes planes progressives sinusoïdales

· Paquet d’onde :

Une OPPS, dont le spectre est exactement réduit à une valeur pour 
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On a ainsi une extension du spectre sur 
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Et avec 
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L’onde correspondante s’appelle un paquet d’onde.

5)  Ondes stationnaires

· Définition :
C’est une onde qui s’écrit sous la forme 
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· Cette onde peut aussi être décomposée en OPPS.

II  Equation d’onde classique
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A)  Propriétés

· C’est une équation linéaire

· Elle traduit un phénomène réversible.

On va en chercher des solutions en onde plane (Euler), en onde sphériques, en OPPS (Fourier) et en ondes stationnaires (Bernoulli)

B)  Solution en ondes planes
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Ou 
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1)  Changement de variable

On change 
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Ainsi, 
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Et donc l’équation devient 
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2)  Intégration

· Par rapport à w :
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· Par rapport à u :
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La solution la plus générale de l’équation classique pour une onde plane est donc 
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Ainsi, toute onde plane solution de l’équation se décompose en une somme de deux ondes progressives à la même vitesse c, l’une dans le sens positif et l’autre dans le sens négatif.

C)  Solution en ondes sphériques

1)  Définition

C’est lorsque 
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 ; ainsi, les surfaces d’onde sont des sphères, centrées en l’origine.

2)  Solution de l’équation d’onde


[image: image131.wmf]0

1

2

2

2

2

=

¶

¶

-

Ñ

t

s

c

s

r


On a 
[image: image132.wmf]2

2

2

)

(

1

r

rs

r

s

¶

¶

=

Ñ

r


Donc 
[image: image133.wmf]0

1

)

(

1

2

2

2

2

2

=

¶

¶

-

¶

¶

t

s

c

r

rs

r


Soit 
[image: image134.wmf]0

)

(

1

)

(

2

2

2

2

2

=

¶

¶

-

¶

¶

t

rs

c

r

rs


Ainsi, 
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D)  Solution en onde plane progressive sinusoïdale

1)  Relation de dispersion
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On cherche une solution de la forme 
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L’équation devient alors : 
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Une solution non triviale de l’équation vérifie ainsi 
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· En faisant une transformation de Fourier :
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 est solution de l’équation d’onde classique :
La transformée de Fourier fait correspondre :
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· Vitesse de phase :
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Remarque : réciproquement, si 
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, alors l’onde est solution de l’équation d’onde classique.
2)  Propagation d’un paquet d’onde
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L’onde peut se décomposer en OPPS, qui se déplacent toutes à la même vitesse de phase (toutes vérifient l’équation – qui est linéaire).

Donc à un instant ultérieur, en « recomposant » les OPPS, on obtiendra la même onde décalée (si elles ont toutes la même vitesse de phase de même signe) :
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E)  Solution en ondes planes stationnaires

1)  Séparation des variables
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Comme le membre de droite ne dépend que de t, celui de gauche que de x, ils sont tous deux constants, disons qu’ils valent 
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On a une onde stationnaire sinusoïdale 

(Le terme « sinusoïdal » désigne la variation spatiale)

· Si 
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Ce type d’onde correspond nécessairement à un régime transitoire.

2)  Recherche directe de solutions en 
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On cherche une solution de la forme 
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3)  Etude des ondes stationnaires sinusoïdales

On a 
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· Evolution de l’onde :
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Remarque :

Ce n’est pas la même chose qu’une onde progressive.

Deux points de l’axe vibrent soit en phase soit en opposition de phase.

· Nœuds et ventres :
· Nœuds : ce sont les points pour lesquels 
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La distance entre deux nœuds est donc telle que 
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· Ventres : ce sont les points pour lesquels 
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Ainsi, on a encore 
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4)  Ondes planes stationnaires, ondes planes progressives sinusoïdales

· Une onde stationnaire sinusoïdale est somme de deux ondes progressive sinusoïdales :
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· Une onde plane progressive sinusoïdale peut être décomposée en deux ondes stationnaires sinusoïdales :
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A deux instants différents :


[image: image194.emf]x x


Lorsque l’une des ondes est au maximum d’amplitude, l’autre est nulle.

Ainsi, les ondes stationnaires sont aussi utiles pour déterminer les solutions d’une équation d’onde.
III  Equation d’onde quelconque (linéaire)

Une grandeur physique donnée et un milieu conduisent à une équation d’onde

A)  Propagation

1)  Relation de dispersion
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Quelle relation doit vérifier 
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Par la transformée de Fourier, on fait correspondre 
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Exemple :
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Pour avoir 
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On a donc une relation 
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, appelée relation de dispersion.

Ainsi, à l’équation d’onde vérifiée par s correspond la relation de dispersion, vérifiée par 
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On se limite à 
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2)  Propagation et atténuation
On a 
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· Propagation : correspond à un couplage entre x et t :
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Vitesse de phase :
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Propagation dispersive/non dispersive :

En général, 
[image: image221.wmf]j

v

 dépend de 
[image: image222.wmf]w

. Donc les différentes composantes de Fourier ne se propagent pas toutes à la même vitesse.
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· Phénomène d’atténuation et d’amplification :

C’est le terme en 
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· Atténuation : c’est lorsque 
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On a ainsi une propagation dans le sens positif (
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Distance caractéristique d’atténuation 
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Causes : absorption de l’onde par le milieu, interférences.

Comme 
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 dépend de 
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, les différentes composantes ne sont pas atténuées de la même façon :
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Si 
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 et on a la même chose à l’envers (pour x).

· Amplification :
C’est lorsque 
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Exemple : cavités laser.

· Cas particuliers :
Si 
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C’est une onde progressive non atténuée :
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, c'est-à-dire une onde stationnaire.
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On a une onde évanescente, c'est-à-dire que 
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3)  Propagation d’une onde plane non monochromatique
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· Décomposition spectrale :
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· Déformation du signal :

La vitesse de phase et la distance d’atténuation dépendent de 
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, donc le signal se déforme :
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4)  Propagation d’un paquet d’ondes, vitesse de phase, vitesse de groupe

· Paquet d’onde :
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· Exemple :
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Propagation dans un milieu tel que 
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· Forme du paquet d’onde :
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On pose 
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Pulsation spatiale de sinc : 
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[image: image270.emf]x


Lorsque t varie, la « bosse » va se déplacer lentement pendant que le « serpent » se déplace plus rapidement en épousant toujours la bosse.
· Vitesse de phase :
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Correspond à la vitesse d’une composante de Fourier, c'est-à-dire la vitesse du « serpent ».

C’est une grandeur mathématique, sans aucune signification physique (elle peut très bien être supérieure à la vitesse de la lumière)

· Vitesse de groupe :
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Cette vitesse représente une vitesse de propagation de l’énergie (donc inférieure à la vitesse de la lumière)

· Cas général :
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On pose encore 
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- On a 
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 est constante dans l’intégration, et intervient donc comme une constante multiplicative.
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Souvent, elle représente la vitesse de propagation de l’énergie (c'est-à-dire quand 
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 est à variation lente.

- Relation de Rayleigh :

On a 
[image: image286.wmf]dk

d

v

g

w

=

, et 
[image: image287.wmf]k

v

w

j

=

. Donc 
[image: image288.wmf]dk

dv

k

v

dk

kv

d

v

g

j

j

j

+

=

=

)

(


Comme 
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B)  Conditions aux limites

1)  Exemple préliminaire
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· Si A, B sont fixes :
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· Si A est fixe, B fixé à un anneau :
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Petit anneau : soumis à l’action normale de la tige, et à l’action de la corde.

Si on considère qu’il a une masse nulle, d’après le principe fondamental de la dynamique, l’action de la corde compense exactement l’action de la tige.
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Comme on ne prend en plus en compte que l’action tangentielle de la corde, cela signifie que celle-ci est toujours normale à la tige, soit :
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· Si A est excité, B fixe :
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Contraintes temporelles :
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 : vitesse initiale des différents points.

2)  Cas général

· Conditions aux limites spatiales :

· Oscillations libres :
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· Oscillations forcées : 
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· Conditions aux limites temporelles :

· Oscillations libres :
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· Oscillations forcées :

On suppose qu’on attend suffisamment longtemps pour que le régime soit le régime établi, indépendant alors des conditions initiales.

3)  Oscillations libres d’une cavité

On considère ici une cavité unidimensionnelle.
· OPPS et ondes stationnaires :

L’onde résultante doit satisfaire les conditions aux limites, mais une OPPS ne peut généralement pas les satisfaire (à cause de la propagation). Par contre, la décomposition en ondes stationnaires peut le permettre.

· Modes propres :

· Définition :

C’est une onde stationnaire (en 
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Ainsi, pour une onde stationnaire, tous les points de la cavité vibrent en phase ou en opposition de phase.

Pour une cavité tridimensionnelle, on aurait 
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· Pulsations propres :

Le mode propre doit satisfaire :

L’équation d’onde, donc une équation différentielle satisfaite par 
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Les conditions aux limites ; on a ainsi un spectre discret de valeur de 
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 possibles.

· Exemple : modes propres d’une corde de longueur l :
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On a vu que l’équation d’onde que vérifie la corde est l’équation d’onde classique : 
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Pour une solution de la forme 
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Conditions aux limites : 

En 
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· Oscillations quelconques dans la cavité :
· Superposition de modes propres :

Décomposition en ondes stationnaires :
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Conditions aux limites :
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Comme 
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Donc toutes les composantes de Fourier vérifient cette condition aux limites.

Et si 
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Donc toutes les composantes sont des modes propres.

Ainsi, toute onde dans la cavité est une superposition de modes propre.

Les conditions aux limites donnent des valeurs discrètes de 
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· Exemple : corde pincée :
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On lâche la corde sans vitesse initiale.
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s est solution de l’équation d’onde classique, donc :
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Donc 
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Comme A est fixe, on a 
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Comme B est fixe, on a 
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La corde est initialement immobile :
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Donc 
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Forme initiale de la corde :
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On décompose alors F en série de Fourier et on identifie :
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Et donc 
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Ce qui correspond à une superposition de modes propres.

4)  Oscillations forcées d’une cavité

· Expérience de la corde de Melde :
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On cherche 
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La solution doit satisfaire : l’équation d’onde, les conditions aux limites :

En A : 
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· Solution générale :

Rappel :

Pour un oscillateur harmonique excité, on avait 
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Equation homogène associée : oscillations libres à 
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Solution particulière 
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Ici, la solution est la somme de :

La solution générale de l’équation d’onde classique avec les conditions aux limites 
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 (amortie), et de la solution particulière sinusoïdales en 
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· En régime permanent :
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Donc dans l’équation :
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Conditions aux limites :

En 
[image: image381.wmf]0

=

x

, 
[image: image382.wmf]0

cos

=

j

 ; on prend 
[image: image383.wmf]2

/

p

j

-

=


Donc 
[image: image384.wmf]t

i

e

x

c

A

t

x

s

W

-

÷

ø

ö

ç

è

æ

W

=

sin

)

,

(


En 
[image: image385.wmf]l

x

=

, 
[image: image386.wmf]t

i

t

i

e

l

c

A

ae

W

-

W

-

÷

ø

ö

ç

è

æ

W

=

sin


Donc 
[image: image387.wmf]÷

ø

ö

ç

è

æ

W

=

l

c

a

A

sin


Et 
[image: image388.wmf]t

i

e

x

c

l

c

a

s

W

-

÷

ø

ö

ç

è

æ

W

÷

ø

ö

ç

è

æ

W

=

sin

sin


· Amplitude des ventres de vibration :

Cas général :
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Amplitude minimale :

C’est lorsque B correspond à un ventre. On a alors 
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Amplitude maximale :

C’est lorsque B correspond à un nœud. On a alors 
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Théoriquement, on devrait avoir une amplitude infinie, ce qui s’explique par le fait qu’au nœud, la corde ne devrait normalement pas bouger, mais comme elle est excitée, le reste de la corde doit avoir une amplitude infinie pour « compenser ».
· Cas général :
Pour une excitation périodique dans une cavité, les oscillations libres sont amorties, et le régime établi dépend de la pulsation 
[image: image392.wmf]W

 excitatrice.

IV  Compléments

A)  Utilisation des complexes

1)  Grandeurs scalaires

· Amplitude complexe :
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· Convention 1 :
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Et donc 
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· Convention 2 :
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· Convention 3 :
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· Opérateurs :
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, il faut prendre en plus en compte 
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· Cas des grandeurs quadratiques (énergétique en général) :
Exemple :

Pour u, i sinusoïdaux, 
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 n’est pas en général sinusoïdal.
· Valeur quadratique instantanée :
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Il faut donc repasser aux réels avant de faire le produit.
· Valeur quadratique moyenne :

Pour 
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Donc 
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(En particulier, 
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· Ondes stationnaires sinusoïdales :
Pour 
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(On ne passe pas en complexe avec 
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2)  Grandeurs vectorielles

· Principe :

On a 
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On a ici encore 
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Remarque :
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· Polarisation rectiligne, elliptique, circulaire :

Onde transverse : c’est une onde se propageant selon Oz :
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Ainsi, 
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· Polarisation elliptique :

C’est le cas le plus général :
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Attention : contrairement à ce que pourrait laisser croire l’expression complexe de s, l’orientation de s dépend en général du temps.
· Polarisation rectiligne :

C’est lorsque 
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La direction du vecteur reste donc ici fixe.

· Polarisation circulaire :
C’est lorsque 
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(Comme le volant d’une voiture)

Dans le premier cas, 
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· Valeur quadratique moyenne :
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B)  Chaîne de pendules couplés
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On suppose que les ressorts ne sont ni comprimés ni étendus à l’origine.

Les pendules sont en file, infinie.

1)  Equation du mouvement
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D’après le théorème de la résultante dynamique, projeté :
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Ainsi, 
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On a ainsi une équation d’onde (discrète pour x)

2)  Approximation continue

On a 
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Donc l’équation devient :
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 (équation de Klein–Gordon)

Relation de dispersion :

On cherche une solution en 
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En injectant dans l’équation, on obtient 
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· Si 
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On a donc une propagation dans le sens positif ou négatif.

· Vitesse de phase : 
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· Vitesse de groupe : 
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[image: image473.emf]v

g



v



0



 a


· Cas où 
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Ainsi :
· Il n’y a pas de propagation

· 
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· A, B sont déterminés par les conditions aux limites.

· Réflexion et transmission :
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On verra qu’une partie sera réfléchie et l’autre traversera. (c’est le cas en rouge)

Si 
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Il n’y a pas de propagation d’énergie (
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3)  Solutions exactes

On cherche une solution en 
[image: image484.wmf])

.

(

t

kna

i

e

w

-

 :

· L’équation de dispersion devient alors 
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4)  Validité de l’approximation continue

En linéarisant le sinus, on obtient 
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, qui est l’équation de dispersion trouvée dans l’approximation.

Ainsi, pour valider l’approximation, il faut pouvoir linéariser le sinus, c'est-à-dire qu’on doit avoir 
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[image: image489.emf]
Dans le premier cas, l’approximation est justifiée ; dans le deuxième…

Il faut en fait que l’onde ne « voie » pas la discontinuité du milieu.

C)  Ligne électrique
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1)  Modélisation

Caractéristiques de la ligne :

· Résistance du fil et de la terre

· Conductance de fuite (isolant)

· Effet capacitif dû à la symétrie de révolution

· Effet d’auto–induction

La résistance et la conductance peuvent être aussi petites que désiré, mais les deux autres sont imposées (dues à la propagation de courant)

On modélise un élément de fil par :
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(Les grandeurs l, r, c, g sont des grandeurs linéiques)

Au premier ordre, l’ordre dans lequel on met les composants n’a pas beaucoup d’importance.

2)  Equation d’onde

On cherche les équations vérifiées par 
[image: image492.wmf])

,

(

t

x

u

, 
[image: image493.wmf])

,

(

t

x

i

.

· Loi des Nœuds :
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Soit, au premier ordre :
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Ainsi, 
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· Loi des mailles :
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· Equation des téléphonistes :

En dérivant la deuxième relation par rapport à x, 
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On trouve la même équation pour i.

Ces équations traduisent un phénomène irréversible.

Si 
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, on retrouve l’équation d’onde classique avec une célérité 
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 (on verra que cette valeur correspond à la vitesse de la lumière)

3)  Relation de dispersion

On cherche une solution en 
[image: image504.wmf])
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Ainsi, 
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Si on note 
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· Vitesse de phase :
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· Atténuation :
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4)  Propagation d’un signal

· Ordres de grandeur :

Pour une ligne réelle, on a 
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On a de plus 
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Conséquence :

Si la ligne est de l’ordre du mètre, on peut négliger la propagation (c'est-à-dire considérer qu’il n’y a pas de déphasage)

· Si 
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 dépendent de 
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C’est assez gênant pour les lignes téléphoniques, puisque si la vitesse de phase est variable, on pourrait recevoir par exemple les sons aigus avant les sons graves et plus atténués lorsqu’on téléphone sur une grande distance.

Comment avoir alors des lignes pour lesquelles 
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C'est-à-dire par identification, 
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D)  Effet Doppler non relativiste

Exemple :

On considère une ligne de bus, sortant d’un hangar à intervalles réguliers de 5 minutes :


[image: image539.emf]S
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Si l’observateur se déplace, la fréquence à laquelle l’observateur voit les bus sera différente de celle à laquelle ils sont « émis » par le hangar, et donc 
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Onde dans un milieu matériel :

On note 
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On va traiter deux cas :

Celui où la source est immobile par rapport au milieu mais l’observateur se déplace. Celui où la source se déplace dans le milieu et l’observateur reste immobile.

1)  Source immobile

On suppose que l’observateur se déplace à vitesse constante.

· Méthode 1 :
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Un onde émise à 
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Une onde émise à 
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Et donc en faisant la différence, 
[image: image547.wmf]c

r

T

T

S

O

D

+

=


Si l’observateur se déplace lentement par rapport à c, on peut assimiler 
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 à un déplacement infinitésimal et :
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· Analyse :
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L’effet Doppler est un effet longitudinal, c'est-à-dire que c’est la composante longitudinale de la vitesse qui intervient dans l’effet.
· Méthode 2 :
· Dans R lié au milieu et à la source,
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Et 
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· Dans R’ lié à O (en translation à la vitesse 
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· Invariance galiléenne :

(i) 
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C'est-à-dire qu’à un endroit et un moment donnés, l’onde a la même valeur qu’on se place dans R ou dans R’.
(ii) On a 
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Ainsi, 
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Et comme 
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2)  Observateur immobile
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· Expression de 
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Donc ici encore 
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· Analyse :
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3)  Généralités

· Les deux formules obtenues sont dissymétriques, ce qui peut paraître étonnant, mais s’explique en fait par la présence du milieu.

· Onde électromagnétique dans le vide :

· Il n’y a pas de milieu de propagation, donc on doit obtenir la même formule, que ce soit S ou O qui se déplace.

· Il y a des transformations supplémentaires à faire en relativité restreinte.

· Résultat :

On trouve un effet Doppler longitudinal en 
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Mais on a en plus un effet Doppler transverse en 
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E)  Propagation dans une file d’atomes

1)  Modèle

On considère une file d’atomes de masse m, espacés régulièrement :

[image: image582.emf]x
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Les atomes occupent les abscisses 
[image: image583.wmf]Z

Î

n

na

,


Ils sont liés entre eux par une force de rappel K, et ne sont soumis à aucune force lorsqu’ils sont dans leur position d’équilibre.

On note 
[image: image584.wmf]n

u

la distance qui sépare l’atome situé en 
[image: image585.wmf]na

 de sa position d’équilibre.
(Ce modèle peut par exemple modéliser la propagation du son dans un solide cristallin)

2)  Equation du mouvement

On a l’équation, pour chaque atome :
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On pose 
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3)  Approximation continue

On considère que 
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On peut donc considérer que 
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 est une fonction continue de x.

Ainsi, dans l’équation précédente, on peut écrire, 
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Et donc 
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, on obtient l’équation :
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On obtient donc l’équation d’onde classique.

Justification de l’approximation :

Pour des solutions en OPPS, 


[image: image602.emf]
Dans le premier cas l’approximation est justifiée, mais pas dans le deuxième.

Il faut donc que 
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4)  Domaine dispersif (retour au discret)

On cherche des solutions en OPPS, 
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Relation de dispersion :

Dans l’équation différentielle, on obtient :
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Soit pour des solutions non nulles :
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Et donc 
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[image: image609.emf]
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· Première zone de Brillouin

Entre deux atomes voisins, on a une différence de phase 
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Si on décale k de 
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On peut donc se limiter à 
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[image: image616.emf]k dans la zone
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Un déplacement de l’onde en traits pleins correspond à une oscillation des atomes, et à un autre type de déplacement pour l’onde en pointillés.

Ceci vient du fait qu’on a affaire à un système discret (et donc les deux courbes ne coïncident que sur un ensemble discret de point)

Ainsi, l’état peut être décrit au choix par la première onde ou par la deuxième.

· Vitesse de phase, vitesse de groupe :
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· Centre de la zone de Brillouin :
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Dans cette zone, 
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· Bord de la zone de Brillouin :

On a 
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, les atomes bougent en opposition de phase avec leurs voisins.
On a ainsi une onde stationnaire, avec un déphasage de 
[image: image627.wmf]p

 entre deux atomes voisins, une vitesse de phase 
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· Pulsation de coupure :

On n’a ici que des pulsations 
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 augmente, la propagation devient plus dispersive. Quand 
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· Si on excite avec 
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On va rechercher des solutions avec k complexe, 
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Relation de dispersion :
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On a alors 
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Pour avoir 
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Donc soit 
[image: image641.wmf]0

=

b

, ce qui a déjà été vu

Soit 
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On a alors 
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Pour avoir 
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, il faut de plus que p soit impair, et on a alors 
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Soit 
[image: image647.wmf]2

ch

a

c

b

w

w

=


· Ondes évanescentes :

On obtient 
[image: image648.wmf]t
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[image: image649.emf]
On a donc une onde stationnaire ; les atomes vibrent en opposition de phase avec les atomes adjacents.

On a 
[image: image650.wmf]0
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g

v

, donc pas de propagation de l’énergie (onde évanescente)

· Excitation d’une chaîne d’atomes :

On prend ici une chaîne d’atomes espacés régulièrement, semi–infinie, et on agite le premier atome avec une pulsation 
[image: image651.wmf]w

 :

(1) Si 
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, les atomes se mettent à bouger petit à petit : on fournit continuellement du travail

(2) A 
[image: image653.wmf]c
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, deux atomes voisins vibrent avec la même amplitude, en opposition de phase.

(3) Si 
[image: image654.wmf]c
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, en régime permanent, les atomes vibrent en opposition de phase, mais l’amplitude diminue avec une distance caractéristique 
[image: image655.wmf]b
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. Ainsi, au bout de quelques atomes, il n’y a plus de mouvement. A partir de ce moment là, il n’y a plus de travail à fournir.

Chapitre 2 : Les ondes
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