Primitives et intégrales
On remarque dans une activité préalable à ce chapitre que plusieurs fonctions de formules similaires (avec une constante de différence) peuvent avoir la même fonction dérivée : par exemple les fonctions x 
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x² – 2x et x  x² – 2x + 3 ont bien la même fonction dérivée, pourtant ce sont des fonctions différentes…

I) Primitives
Définition : Soit f une fonction définie sur un intervalle I. On dit qu'une fonction F dérivable sur I est une primitive de f lorsque pour tout x ( I : F '(x) = f(x)

Exemple : Soit f une fonction telle que : ( x (ℝ, f(x) = 3x2 + 2x + 1.
La fonction F1 : x 
[image: image3.wmf]a

x 3 + x 2 + x est une primitive de f sur ℝ, mais la fonction F2 : x 
[image: image4.wmf]a

 F1(x) + 2 en est également une…

Propriété : Soient f une fonction définie sur un intervalle I et F une primitive de f sur I.

Toutes les primitives de f sur I sont de la forme : Fk : x 
[image: image5.wmf]a

F(x) + k, où k est une constante réelle.

Exemple : Soit f une fonction telle que : ( x (ℝ, f(x) = 2 cos (2x) + 2x.
Les primitives Fk de f sont de la forme : Fk : x 
[image: image6.wmf]a

 sin (2x) + x 2 + k avec k ( ℝ.
TABLEAU DES DÉRIVÉES ET PRIMITIVES

DES FONCTIONS DE RÉFÉRENCE
[image: image1.wmf]a


N.B. : On peut ajouter une constante réelle à chacune de ces primitives. 

II) Primitives de sommes, produits par une constante, puissance d'une fonction
Propriété : Soient f, u et v trois fonctions définies et dérivables sur un intervalle I, on note F, U et V une primitive sur I de chacune de ces fonctions.
( SI f = u + v.



ALORS
F = U + V est une primitive de f sur I.

( SI f = k ( u avec k constante réelle.
ALORS
F = k ( U est une primitive de f sur I.

( SI f = u' ( u n avec n entier tel que n ( 1 ou n ( –2








ALORS
F = 
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 est une primitive de f sur I.

Exemple : Soit f une fonction telle que : ( x ( ℝ , f(x) = 2x (x 2 + 1) 2.
f est de la forme u' ( u 2 avec u : x 
[image: image8.wmf]a

x 2 + 1.

Donc une primitive de f sur ℝ est la fonction F : x 
[image: image9.wmf]a
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Déterminer une primitive particulière : On cherche la primitive F de la fonction f telle que F(1) = 2.
On sait que F(x) = 
[image: image12.wmf]3
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 + k avec k constante réelle à déterminer.
On a donc F(1) = 
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 + k = 2.
Donc k = 
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Donc F(x) = 
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III) Intégration
1) Fonction continue et positive

Principe : On dit qu'une fonction f définie sur un intervalle I est continue sur cet intervalle si on peut en tracer la représentation graphique sans lever le crayon.

Exemples : ( Les fonctions que l'on a déjà pu étudier sont en quasi-totalité continues.
( Soit f une fonction telle que : ( x ( ]–∞ ; 0], f(x) = x – 1 et ( x ( ]0 ; +∞[, f(x) = 
[image: image17.wmf]x

.

On a f(0) = 0 – 1 = –1 mais lim f(x) = lim 
[image: image18.wmf]x

 = 0.





         x ( 0+
x ( 0+
Donc il faudra lever le crayon en x = 0 pour tracer la représentation de cette fonction.

f n'est pas continue sur ℝ. (il y a une "cassure" dans la courbe)

[image: image54.png]



Activité : Dans le repère ci-contre, les points A et B sont sur la droite d'équation y = 0,5 x + 2, les points C et D sont des points de l'axe des abscisses et on a : xC = xA = 2 et xD = xB = 6.
On veut calculer AABDC.

On a : AABDC = 
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AC = yA = 0,5 ( 2 + 2 = 3.
BD = yB = 0,5 ( 6 + 2 = 5.

CD = xD – xC = 6 – 2 = 4.

[image: image55.png]


Donc : AABDC = 
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Il n'est pas toujours aisé de réitérer ce type de raisonnement…
Définition : Soient a et b deux réels tels que a ( b et soit f une fonction continue et positive sur [a ; b].

L'intégrale de a à b de la fonction f est l'aire de la partie du plan délimitée par l'axe des abscisses, les droites verticales d'équations x = a et x = b et la courbe représentative de f.
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On la note : 
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Propriété : Soient a et b deux réels tels que a ( b, soit f une fonction continue et positive sur [a ; b] et soit F une primitive de f sur [a ; b].

[image: image57.jpg]
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On a : 
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Exemples : ( L'aire précédente peut également être calculée par intégration :
Une primitive de la fonction f : x 
[image: image23.wmf]a

0,5 x + 2 est F : x 
[image: image24.wmf]a

0,25 x 2 + 2 x.

On a : 
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( La fonction représentée ci-contre est la fonction f : x 
[image: image26.wmf]a

3 sin 
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Une primitive de f est F : x 
[image: image28.wmf]a

– 6 cos 
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L'aire coloriée est égale à :
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= – 6 cos (2) + 6 cos 
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2) Fonction continue
Principe : On cherche à généraliser le concept d'intégrale aux fonctions continue, quel que soit leur signe, on peut ainsi chercher 
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… Pour cela, on définit l'intégrale d'une fonction continue et négative sur [a ; b] comme l'opposé de l'aire du domaine délimité par les droites d'équation x = a, x = b, l'axe des abscisses et la courbe représentative de f.


Ainsi on a : 
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SI ON RECHERCHE DES AIRES, IL FAUDRA "SÉPARER" L'INTÉGRALE D'UNE FONCTION SELON SON SIGNE :

On a : 
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MAIS si on cherche la surface totale en u.a. : 
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3) Domaine compris entre deux courbes

Principe : On cherche à déterminer l'aire du domaine délimité par les droites d'équation x = a, x = b, et les courbes représentatives de fonctions f et g continues sur [a ; b] telles que :

f(x) ( g(x) pour x ( [a ; b].

Cette aire, exprimée en u.a., est égale à :
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4) Propriétés

Linéarité : Soient a, b et k trois nombres réels, et soient f et g deux fonctions continues sur [a ; b].

 On a : 
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Exemple :  
[image: image41.wmf](
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  = 
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Relation de Chasles : Soient a, b et c trois nombres réels appartenant à un intervalle I et soit f une fonction continue sur I. On a : 
[image: image44.wmf].
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Exemple :  Soit f la fonction définie et continue sur ℝ par f(x) = | x (x – 2) |. On cherche 
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)

x

(

f

3

0

ò

.
( Le produit x (x – 2) est positif sur ]–∞ ; 0] ( [2 ; +∞[ et négatif sur [0 ; 2].

Donc sur ]–∞ ; 0] ( [2 ; +∞[, on a f(x) = x (x – 2) MAIS sur [0 ; 2], on a f(x) = – x (x – 2).

( D'après la relation de Chasles, on a : 
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2

2

3

2

0

2

3

x

x

3

1

x

x

3

1

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

+

-

=



[image: image50.wmf]ú
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5) Valeur moyenne

Propriété : Soient a, b deux nombres réels tels que a < b, et soit f une fonction continue sur [a ; b]. La valeur moyenne de f sur [a ; b] est :  vm = 
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