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JAUGES - POTENTIELS RETARDES

I- EQUATIONS DE MAXWELL EN TERMES DE POTENTIELS  

Les deux équations de Maxwell les plus simples, le théorème de Faraday : 


et l'expression de la non existence de monopôles magnétiques : 


 ont permis de définir les potentiels scalaire et vecteur V et 

 par :


 INCORPORER "Equation" \* mergeformat  


On reporte maintenant ces deux définitions dans les deux autres équations. Dans l'expression locale du théorème de Gauss :

   


D'où l'équation, qui se ramène à l'équation de Poisson dans le cas des courants stationnaires, ou de Laplace en l'absence de charges :
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Dans l'expression du théorème de Faraday :
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En utilisant l'identité vectorielle (eq.11 du formulaire donné en cours) :
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et en rassemblant les dérivées secondes  :
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avec 

, relation entre les caractéristiques du milieu nécessaires pour que l'on retrouve que la vitesse de la lumière dans le vide est c. 

On définit l'opérateur d'Alembertien 
 INCORPORER Word.Picture.8  

généralisation dans l'espace à quatre dimensions du Laplacien :
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


et l'équation différentielle pour le potentiel vecteur s'écrit :




On obtient ainsi deux équations différentielles du deuxième ordre et couplées pour trouver V et 

. L'avantage de la formulation en termes de potentiel est de réduire le nombre de variables de 6 pour le champ électromagnétique à 4 pour les potentiels. Ces équations ne sont pas très simples mais il reste encore une liberté pour les simplifier : en effet, pour une fonction vectorielle il faut connaître non seulement son rotationnel, comme c'est le cas pour 

, mais aussi sa divergence (indépendemment des constantes). Ainsi, le choix de V et 

 conduisant au même couple de solutions physiquement acceptables pour le champ électromagnétique ( 

 ) n'est pas unique : différentes solutions pour V et 

 correspondent à différents choix de jauge.

II- TRANSFORMATIONS DE JAUGE.

Ce sont des transformations que l'on peut appliquer à un couple de solutions pour les potentiels (V et 

) conduisant à une solution ( 

 ) des équations de Maxwell, et qui le transforment en un autre couple (V' et 

') tel que :
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le deuxième couple conduisant à la même solution pour le champ électromagnétique. 

On doit donc avoir à la fois, d'une part :
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et 

peut être choisi comme un gradient :
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et d'autre part :
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D'où :

 


et compte tenu de la contrainte précédente :
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en tout point de l'espace. Une solution possible est :
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En résumé, toute transformation par une fonction  telle que :
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conduit à la même solution pour le champ électromagnétique, c'est une transformation de jauge (c'est facile à vérifier). 

 Il s'agir maintenant de trouver la transformation de jauge la plus convenable pour simplifier les équations de Maxwell pour les potentiels. Il existe un grand nombre de jauges, les plus connues sont celle de Lorentz et celle de Coulomb.

a) jauge de Lorentz

 C'est celle dans laquelle les potentiels satisfont à une relation qui simplifie beaucoup l'équation contenant le d'Alembertien :
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Elle réduit les équations pour les potentiels à :







L'ensemble de ces deux équations et de la condition de Lorentz, associées aux définitions des potentiels, est équivalente aux équations de Maxwell en tout point de l'espace. Cette transformation est associée à la fonction  telle que :
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La jauge de Lorentz est donc celle pour laquelle la fonction qui assure les transformations est :




b) jauge de Coulomb

C'est la plus simple à laquelle on pense quand il faut fixer la divergence du potentiel vecteur :
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et ramène l'équation différentielle pour V à :




On reconnaît l'équation de Poisson obtenue dans le cas des courants permanents. On en connaît la solution à chaque instant :
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Cette jauge étant celle de l'électrostatique, elle porte le nom de jauge de Coulomb.

L'équation pour le potentiel vecteur devient :




Dans la solution trouvée pour V, la seule dépendance en temps est dans la densité de charge , ce qui fait passer la dérivation par rapport au temps de V sous le signe intégrale, avec, d'après l'équation de continuité pour la charge:
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d'où :




La simplification de l'équation pour le potentiel scalaire se paye au prix de la complication de l'équation pour le potentiel vecteur, par rapport à la jauge de Lorentz.

Le deuxième terme dans le crochet est, comme 

, une densité de courant 

'. De plus, c'est un gradient donc son rotationnel est nul, en conséquence le vecteur vitesse est irrotationnel.On distingue deux types de vecteurs : les vecteurs longitudinaux (comme la vitesse uniforme) dont le rotationnel est nul et les vecteurs transverses ou solenoidaux dont la divergence est nulle. Ici : 

 et 

. On peut montrer, mais c'est plutôt mathématique, que ce deuxième terme est égal au signe près à la composante longitudinale de 

 : il reste alors dans le crochet la seule composante transverse du courant, d'où le nom de jauge transverse que l'on donne parfois à la jauge de Coulomb.

 La jauge de Coulomb correspond à une transformation par une famille de fonctions telles que: 


ce qui définit la jauge de Coulomb par :
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Elle est souvent utilisée quand il n'y a pas de source =0, car alors le potentiel scalaire est constant et le champ électromagnétique est donné par le seul champ magnétique :
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Remarque :

L'expression du potentiel scalaire dans la jauge de Coulomb nous dit que le potentiel en un point de l'espace est déterminé par la valeur de la distribution de charges environnante mais au même instant, ce qui traduit une propagation instantanée de l'information, en contradiction avec la théorie de la relativité qui impose une vitesse finie inférieure à celle de la lumière dans le vide.

Ceci ne remet pas en cause la jauge de Coulomb car c'est dû au fait que le potentiel est un outil mathématique et pas la grandeur directement mesurable. Par contre le champ électrique contient le potentiel vecteur non pas directement mais par sa variation dans le temps. C'est grâce à cette dépendance que les modifications de la densité seront transmises avec retard en laissant à l'information le temps de voyager.

III-POTENTIELS RETARDES

Pour des raisons de symétrie entre les potentiels scalaire et vecteur dans les équations de Maxwell et aussi à cause du manque de causalité de la jauge de Coulomb, on se place en jauge de Lorentz ( remarque : c'est seulement en jauge de Coulomb qu'on a pu observer la non causalité).

On a à la fois :
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Ce sont des équations inhomogènes (ou avec second membre) qui se ramènent à des équations de Poisson dans le cas stationnaire et pour lesquelles on connaît la solution si le temps est vu comme un paramètre et non comme une variable :
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avec les notations précédentes.

Lorsque la densité de charges et le vecteur densité de courant varient dans le temps, l'état des potentiels à un instant donné ne peut être fonction que de l'état des densités à un temps antérieur, appelé temps retardé, auquel le message est parti.Les informations voyageant dans le vide à la vitesse de la lumière, le temps mis pour se rendre du point d'émission M au point de reception P éloigné de r est r/c. Il n'est pas facile mathématiquement de montrer le résultat des équations dans ce cas mais au moins il est logiquement satisfaisant. On trouvera dans certains livres la preuve que les 3 équations dans la jauge de Lorentz sont vérifiées pour les potentiels retardés:
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L'existence des potentiels scalaire et vecteur à distance des charges et des courants montrent que ceux-ci rayonnent puisqu'ils créent un champ électromagnétique et donc une énergie électromagnétique qui se déplacent.

On va s'intéresser au cas particulier d'une charge en mouvement.

IV- POTENTIELS DE LIENARD-WIECHERT
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Ils sont créés par une charge ponctuelle qui se déplace sur une trajectoire connue.

Soient :

 - 
 EQ \O(;r')(t)  
le vecteur qui repère la position M de la charge sur sa trajectoire par rapport à une origine arbitraire O,

- 
 EQ \O(;R)  
la position du point P d'observation 
 EQ \O(;R) 
= 
 EQ \O(;OP)    

 - 
 EQ \O(;r)(t)  
= 
 EQ \O(;MP)  
= r 
 EQ \O(;u)  
le rayon vecteur depuis la charge (point qui agit) vers le point d'observation (point qui subit l'action).

Les potentiels retardés V et 
 EQ \O(;A)  
au point P à un instant donné t dépendent de la position de la charge non pas au même instant t mais à un instant tr antérieur auquel le message a quitté la charge. Pendant l'intervalle de temps (t-tr ) l'information a circulé à la vitesse de la lumière pour parcourir la distance r :

||
 EQ \O(;R) 
- 
 EQ \O(;r')(tr)  
|| = c (t-tr) = r

La position 
 EQ \O(;r')(tr)  
de la charge est appelée position retardée.

En tout point P de l'espace arrive le message d'au plus un point de la trajectoire. On peut raisonner par l'absurde : si deux positions 
 EQ \O(;r'1)(t1)  
et 
 EQ \O(;r'2)(t2)  
correspondant à deux distances r1 et r2 différentes contribuaient au même point P au même instant t, on aurait :

r1= c(t-t1)     et     r2= c(t-t2)     

le chemin parcouru par la charge serait :

r = I
 EQ \O(;Dr) 
I = I
 EQ \O(;r2) 
-
 EQ \O(;r1) 
I 

 I  r1 - r2 I =c  I  t1 - t2 I  = c t

ce qui donnerait à la charge une vitesse moyenne : 
 c. Comme il s'agit d'une valeur moyenne, cela sous-entendrait que la charge, qui a une masse et donc une vitesse inférieure à c, a eu par moments une vitesse supérieure à celle de la lumière. 

La tentation est maintenant de faire cette seule correction de position retardée dans l'expression des potentiels, mais ce serait faire abstraction de l'approximation de charge ponctuelle qui n'est valable que si les distances d'observation sont grandes par rapport à la taille de la charge. 

Parenthèse de "relativité" avec les mains.

Il s'agit d'évaluer la conséquence de la taille finie d'une charge losqu'elle se déplace à grande vitesse.

Parler de charge ponctuelle, c'est considérer que l'objet chargé est assez petit pour que sa forme soit indifférente. On peut donc la choisir adaptée à une description mathématique simple sans que cela n'enlève de généralité au résultat : on peut supposer la charge répartie dans un parallélépipède de côtés parallèles et perpendiculaires à la direction de propagation de la charge.

1) la charge est immobile.
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L'observateur a son oeil sur l'axe de propagation en O. 

Il reçoit les rayons au temps t. Les rayons de la face A sont partis au temps tA, ils ont voyagé pendant le temps (t-tA) pour parcourir la distance AO=c(t-tA), et de même pour la face B, avec tB<tA. Pour l'observateur, la longueur de charge au repos qui émet des informations arrivant au temps t est est aussi la longueur du chemin parcourue par la lumière pour rattraper la face A :

L = c(t-tB) - c(t-tA) = c(tA-tB)

2) la charge est en translation dans la direction d'observation.
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Pendant que la lumière émise au temps tB par la face B se propage jusqu'en O, le volume avance (à la vitesse v) et la face A est arrivée en A' au moment où elle émet la lumière qui arrive au même temps t en provenance des deux faces. Si t'A est le moment d'émission de A', l'observateur voit les charges réparties sur la longueur :

L//'  = xB- x'A= c(t-tB) - c(t-t'A) = c(t'A-tB)

L'action de la charge en mouvement se prolonge comme si elle s'étirait. Par contre tous les points de la face avant et tous ceux de la face arrière continuent à émettre au même moment et seule la direction parallèle à la vitesse de la charge agit différemment. Pendant l'intervalle de temps t'A-tB où la lumière émise de B avançait pour retrouver celle qui est émise par la face avant, celle-ci a avancé à la vitesse v de : AA' = L//' - L// = v (t'A-tB) = v  EQ \F(L//';c) 
d'où la longueur efficace :

L//' =  EQ \F(L//;1-\F(v;c)) 
qui donne bien L'>L, pour la direction parrallèle à la direction d'observation et si la charge avance dans le sens de l'observation. En conséquence, le volume efficace ' = L// Sperp  est modifié par rapport au volume au repos par le même facteur 1-v/c.

On peut également dire : pendant que la lumière avance à la vitesse c de la face arrière à la face avant, celle-ci a avancé à la vitesse v :

t =  EQ \F(BA';c)  =  EQ \F(AA';v) 
avec BA'=L//' et AA'=L//'-L//
L//'( EQ \F(1;v)  -  EQ \F(1;c)  ) =  EQ \F(L//;v) 
3) la direction d'observation fait un angle avec la vitesse de la charge 
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La vitesse a maintenant une composante dans la direction d'observation et une composante qui lui est perpendiculaire.

Pour un observateur à grande distance, seules les dimensions dans la direction d'observation sont affectées. La longueur apparente de la charge est maintenant BH=L//cos . Pendant que la face avant A de la charge avance jusqu'en A', la lumière émise par la face arière B avance jusqu'en A'', puis les deux rayons avancent ensemble  : 

  EQ \F(BA'';c)  =  EQ \F(L//' cosq;c)  =   EQ \F(AA';v)  =  EQ \F(L//'-L//;v) 
Si 
 EQ \O(;u)  
est le vecteur unitaire dans la direction et le sens d'observation et 
 EQ \O(;v)  
le vecteur vitesse de la charge :

L//' = 
 EQ \F(L//;1- \F(\O(;u)\O(

;v);c)) 

Les directions perpendiculaires à la vitesses sont vues sans correction de vitesse et pour l'observateur, le volume qui envoie des ondes est plus grand que le volume vrai du domaine quand il est au repos par le même facteur qui multiplie L//.

Dans l'expression du potentiel retardé, la distance au dénominateur étant beaucoup plus grande que le diamètre de la charge, elle ne varie pas quand on décrit la charge et peut sortir de l'ntégrale.  Alors la quantité de charge qui rayonne est plus grande par le même facteur (plus petite si la charge s'éloigne) : 
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Le vecteur densité de courant créé par la charge ponctuelle est 
 EQ \O(;j) 
= 
 EQ \O(;v) 
et l'élément de volume dans l'intégrale donnant le potentiel vecteur est affecté de la même correction . On en déduit les potentiels sentis au point repéré par 
 EQ \O(;R) 
dûs à une charge ponctuelle qui était au point 
 EQ \O(;r')  
au temps retardé : 
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