Chapitre 5  -  Programmation Linéaire


5. Programmation linéaire

Les problèmes de programmation linéaire se rencontrent dans le domaine de la recherche opérationnelle et de l’optimisation. Ils permettent par exemple d’optimiser la composition d’une ration alimentaire ou la gestion de cultures agricoles.
5.1. Echelon d’échange

On considère m fonctions linéaires yi des  n  variables  xk définies par :


[image: image1.wmf]å

=

=

+

=

n

k

i

k

ik

i

m

i

b

x

a

y

1

)

,...,

2

,

1

(


On met ces relations sous forme de tableau, par exemple, pour m=3 et n=4, on a :
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On appelle x1, x2, …, xn  les variables indépendantes (ou de base) et y1, y2, …, ym  les variables dépendantes (ou  auxiliaires). 

Soit la pème fonction yi et soit apq ( 0, on a :
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Ce qui donne m nouvelles fonctions linéaires où yp joue à présent le rôle d’une variable indépendante et xq celui d’une variable dépendante.

Il y a eu échange des rôles suite à ce que nous appellerons un « échelon d’échange » .

Si nous reprenons le cas m=3, n=4 et que nous supposons par exemple que p=2 et q=3, le tableau précédent devient :
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Où les éléments du nouveau tableau sont obtenus par les formules d’échange :
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L’élément apq est appelé pivot, tandis que la ligne et la colonne qui le contiennent sont appelées ligne pivot et colonne pivot.

Exemple
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           0.5            (1.5           3     :  «ligne de base»
5.2. Inversion de matrice

Après  n  échanges  

y = Ax      est transformé  en     x = A-1y    !

5.3. Règles d’échange

(Le pivot est remplacé par son inverse

(Les éléments de la colonne pivot sont les anciens éléments divisées par le pivot

(Les éléments de la ligne pivot sont les anciens éléments changés de signe et divisés par le pivot   (   ligne de base 

(Les éléments restants sont les anciens éléments auxquels on a ajouté le produit de l’ancien élément de la même ligne qui se trouve dans la colonne contenant le pivot par le nouvel élément qui se trouve dans la même colonne et dans la ligne pivot  (règle du rectangle - cf. ligne de base).

5.4. Premier problème

Un atelier de fabrication de chaussures dispose des ressources mensuelles suivantes :

Main d’œuvre (en heures)


:
8000

Temps machine (en heures)


:
2000

Matière première (cuir en dm2)

:
4500

La production consiste uniquement en chaussures pour hommes et chaussures pour dames. La confection d’une paire pour homme nécessite 10 heures de main d’œuvre, 5 heures de temps machine et 15 dm² de cuir tandis que pour fabriquer une paire pour dame il faut 20 heures de main d’œuvre 4 heures de temps machine et 6 dm² de cuir.

Chaque paire pour homme rapporte un bénéfice double de celui d’une paire pour dame, lequel est de 16 euro.

En supposant que toutes les chaussures produites sont vendues, combien de paires pour homme et combien de paires pour dame doit-on produire pour avoir un bénéfice maximum ?

Résumons les données dans un tableau

	
	Dame
	Homme
	Ressources

	Main d’œuvre (h)
	20
	10 
	8000

	Temps machine (h)
	4
	5
	2000

	Cuir (dm²)
	6
	15
	4500

	Bénéfice (euro)
	16
	32
	


Soit x1 le nombre de paires de chaussures pour dame et x2 le nombre de paires pour homme à produire mensuellement.

On a les inégalités suivantes :

20x1  +  10x2  (  8000

  4x1  +    5x2  (  2000

  6x1  +  15x2  (  4500

    x1                (  0

                  x2  (  0       

16x1  +  32x2  =  Max !

Les trois premières inégalités traduisent les contraintes dues aux ressources, les deux inégalités suivantes expriment le fait que l’on ne peut produire un nombre négatif de paires de chaussures. Enfin la dernière égalité signifie que l’on cherche à obtenir un bénéfice maximum.

L’ensemble des conditions reprises ci-dessus constitue un   programme linéaire.

Ce programme est un problème typique d’optimisation où l’on essaye de maximiser une fonction objectif en tenant compte de contraintes imposées.

On peut systématiser le traitement d’un tel programme en introduisant une formulation uniforme des contraintes sous forme de fonctions linéaires qui doivent être non négatives. Ceci se fait en définissant des variables dépendantes yj .

Si l’on note z, la fonction objectif à maximiser, on obtient le programme linéaire équivalent :

y1  =  -20x1  -  10x2  +  8000
(  0

y2  =    -4x1  -    5x2  +  2000
(  0

y3  =    -6x1  -  15x2  +  4500
(  0

              x1                            
(  0

                            x2  

(  0       

z    =  16x1  +   32x2  

=  Max !

( non seulement les variables indépendantes xi doivent être non négatives mais les variables dépendantes yj également,  …  avec  z = Max !

Le programme linéaire ci-dessus ne contient que deux inconnues : x1 et x2. On peut donc le résoudre graphiquement dans le plan (x1, x2).
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L’ensemble des points P de coordonnées (x1, x2) satisfaisant à l’inéquation linéaire

y  =  ax1 + bx2 + c  (  0

Consiste en un demi plan du plan (x1, x2), la frontière d’équation  ax1 + bx2 + c  =  0, étant comprise.

Les cinq inéquations du programme linéaire déterminent cinq demi plans dont les points communs sont contenus dans un polygone constitué de l’ensemble des points qui vérifient les inéquations. Ces points sont dits admissibles et le polygone est appelé domaine admissible.

Dans le cas d’un problème à deux inconnues, le domaine admissible est un polygone convexe.

La fonction objectif est linéaire en x1 et x2 et ses lignes de niveau  z = constante  forment une famille de droites parallèles (cf. figure page précédente).

Parmi tous les points admissibles, celui qui permet de maximiser  z  est le point  D. Ce point est un sommet du domaine admissible, il fournit la solution du problème :

 x1 = 250,      x2 = 200     et     zMax  =  10400.

La résolution graphique nous enseigne de plus qu’au point solution on a  y2 = 0  et  y3 = 0  tandis que  y1 > 0 ce qui signifie que les ressources en temps machine et en cuir ont été épuisées alors qu’il reste une certaine capacité en heures de travail puisque y1>0  (N.B. y1 = 1000).

Les deux conditions y2 = 0 et y3 = 0 sont appelées restrictions essentielles.

5.5. Deuxième problème

Une entreprise de transport dispose de deux dépôts A et B où sont garés, respectivement, 18 et 12 poids lourds. Elle doit  dispatcher 11, 10 et 9 camions vers les sous-traitants R, S et T. Les distances (en km) séparant les dépôts des stations sous-traitantes sont données dans le tableau ci-dessous. Comment faut-il répartir les camions entre les sous-traitants si l’on veut minimiser la distance totale que devront parcourir les poids lourds 

	
	R
	S
	T

	A
	5
	4
	9

	B
	7
	8
	10


On constate que le nombre de camions dont dispose l’entreprise est égal au nombre de camions à acheminer chez les sous-traitants. Ce problème de transport peut donc être décrit à l’aide de deux inconnues. Parmi différents choix possibles, nous définissons les inconnues comme suit :

x1  =  nombre de camions allant de A vers R

x2  =  nombre de camions allant de A vers S

Le nombre de poids lourds à diriger selon les autres trajets peut s’exprimer en fonction de ces deux variables et comme le nombre de camions allant d’un point à un autre ne peut être négatif, on obtient les inégalités suivantes, en introduisant les variables indépendantes yi :

A  (  T :
y1 = -x1  -  x2  +  18  (  0

B  (  R :
y2 = -x1           +  11  (  0

B  (  S :
y3 =        -  x2  +  10  (  0

B  (  T :
y4 =  x1  +  x2  -     9  (  0

A  (  R :
         x1                      (  0

A  (  S :
                   x2            (  0

Le nombre total de kilomètres à parcourir vaut :

z  =  5x1 + 4x2 + 9(18 – x1 – x2) + 7(11 – x1) + 8(10 – x2) + 10(x1 + x2 – 9)

et   z  =  –x1 – 3x2 + 229    est la fonction objectif  à minimiser.

On peut à nouveau résoudre le problème graphiquement dans le plan (x1, x2). Les six inégalités définissent six demi plans qui délimitent le domaine admissible. Les lignes de niveau de la fonction objectif z, correspondant aux valeurs z = 226 et zmax = 191 sont représentées sur la figure. Le point solution indiqué en vert.
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Il faut donc envoyer x1 = 8 camions de A vers R, x2 = 10 camions de A vers S, y1 = 0 camions de A vers T, y2 = 3 camions de B vers R, y3 = 0 camions de B vers S et y4 = 9 camions de B vers T. Ce plan de transport correspond au nombre minimum de kilomètres à parcourir, soit   zMin  =  191 km.

Les deux exemples ont en commun le fait que la solution du problème est unique et correspond à un sommet du polygone admissible. Une telle situation peut se généraliser à n dimensions. Ainsi, par exemple, lorsqu’on a trois variables indépendantes, le domaine admissible est un polyèdre convexe dont les faces ont pour équations xi = 0 et yj = 0. Les surfaces de niveau z = constante étant cette fois des plans parallèles. 

Dans certains problèmes on obtient une infinité de solutions. C’est le cas, dans le plan, si les lignes de niveau sont parallèles à un côté du domaine admissible qui passe par un sommet solution. Il en va de même dans l’espace à trois dimensions si une face du polyèdre admissible qui passe par un sommet solution est parallèle à une surface de niveau   z = constante.  Dans de telles situations, on dit qu’il y a dégénérescence.

Les considérations géométriques précédentes montrent que dans un programme linéaire la(les) solution(s) du problème correspond(ent) à des points situés sur la frontière du domaine admissible. Nous allons donc développer un algorithme qui permet de passer de sommet en sommet pour atteindre la(les) solution(s).

Le démarrage de la procédure nécessitera, évidemment, la connaissance d’un sommet de départ appartenant au domaine admissible.

Dans le premier exemple, l’origine dont les coordonnées sont  x1 = 0 et x2 = 0  est un sommet admissible qui peut servir de point de départ de l’algorithme.

Dans le deuxième exemple, l’origine n’est pas un point admissible et nous ne disposons pas d’un sommet de départ « évident ». Ce type de situation nécessitera un traitement particulier.

5.6. Algorithme du simplexe

Sur la figure de la page 4, nous constatons que chaque coin du domaine admissible est caractérisé par le fait que deux variables s’y annulent, tandis que les autres prennent une valeur positive. Dans le but d’obtenir une suite de sommets qui conduise au sommet solution, nous partirons d’un sommet initial pour aller vers le suivant en longeant un côté du polygone.

Examinons par exemple, la transition du sommet A vers le sommet B dans le cas du premier exemple.

La situation de ces deux points est décrite comme suit :

Sommet A :
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Sommet  B :
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Lorsqu’on passe de A à B, le long de AB, x2  garde sa valeur nulle tandis que x1 passe de zéro à une valeur positive. Simultanément, y1 passe d’une valeur positive à zéro. Toutes les autres variables restent positives et z augmente.

Les variables x1 et y1 ont échangé leurs rôles et on constate donc que pour passer d’un sommet du domaine admissible à un sommet adjacent il suffit d’appliquer un échelon d’échange à deux fonctions linéaires du programme linéaire.

En procédant par échanges successifs nous atteindrons, après un nombre fini d’étapes, le sommet solution.

Comme z doit augmenter à chaque étape, la procédure devra éviter un retour vers un sommet déjà rencontré.

Nous devons à présent définir les règles permettant le choix des pivots successifs conduisant à la maximisation de la fonction objectif pour un programme linéaire défini comme suit :
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Les inconnues non négatives, xk, doivent être déterminées de façon à ce que les m inéquations linéaires soient vérifiées et que la fonction objectif soit maximisée.

L’origine est un point admissible si et seulement si :

ci  (  0     (i=1, 2, …, m) ,

ce que nous supposerons pour la suite, de façon à disposer d’un sommet de départ (N.B. cette hypothèse sera levée plus loin).

Mettons les m inéquations à vérifier ainsi que l’expression de la fonction objet (on dit indifféremment objet ou objectif) sous la forme d’un tableau :
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Les variables indépendantes xk, qui caractérisent un sommet admissible, si on les annule, sont appelées variables de base. Les variables dépendantes yi, qui prennent une valeur non 
négative en un sommet admissible, sont appelées variables auxiliaires. La constante d dans le coin inférieur gauche du tableau est la valeur que prend la fonction z au point admissible « en cours ».

Echangeons à présent xp et yq en prenant comme pivot l’élément apq et en appliquant les règles des l’échelons d’échange.
Le problème à résoudre est de trouver les conditions pour qu’après l’échange le nouveau tableau :
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fournisse un sommet admissible si nous égalons à zéro les nouvelles variables de base x1,…, yp,…, xn. 

Pour avoir un sommet admissible les nouvelles variables auxiliaires y1,…, xq, … ym doivent être non négatives, c’est-à-dire que les conditions 
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 doivent être vérifiées.

De plus, si nous voulons que z augmente il faudra avoir   
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Sur la base des règles des échelons d’échange, nous obtenons :
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Ce qui impose de choisir un pivot apq négatif.

Pour choisir le « meilleur pivot », nous formons à partir du tableau initial les quotients caractéristiques définis par   
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 et ce, pour tout  i ( p  et  aiq < 0.

Le plus grand quotient caractéristique ainsi formé désigne la colonne du pivot, ce qui assure que :  
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 Si cette condition est remplie, l’annulation des nouvelles variables de base correspond bien à un nouveau sommet admissible.

Enfin, puisque  cp ( 0  et  apq < 0  on doit avoir  bq (  0,  condition qui doit être satisfaite pour la colonne du pivot.  Cette condition garantit la croissance de la fonction objectif.

De ce qui précède, on définit les règles qui fixent le choix de l’élément pivot.
5.7. Règles qui fixent le choix du pivot  :

1° la colonne du pivot doit être choisie de façon à ce que son élément bq soit positif (ou nul) ;

2° dans la colonne du pivot, il faut choisir un pivot négatif, on prend parmi les pivots possibles celui auquel correspond le plus grand quotient caractéristique   qi  =  ci/aiq    (le plus petit en valeur absolue !).

Ces règles constituent les bases de l’algorithme du simplexe. Elles permettent la détermination d’une suite de sommets du domaine convexe admissible appelé simplexe. 

La valeur de la fonction objectif croît à chaque échange, sauf éventuellement, dans des cas particuliers tels que les cas de dégénérescence (bq nul ).

L’algorithme du simplexe s’arrête lorsque tous les éléments bi sont négatifs ou nuls.

5.8. Retour au premier problème

Reprenons l’exemple de la manufacture de chaussures traité graphiquement précédemment.

Le schéma simplexe s’écrit :
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Avec comme variables de base   x1 = 0  et  x2 = 0 on obtient le point A  (cf. figure page 4).

On échange x1 et y1 en s’aidant des éléments de la ligne de base. 

Après ce premier échange, les nouvelles variables de base sont y1 et x2 et le schéma simplexe devient :
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Lors du premier échange, on  est parti du point A pour aboutir au point B, en suivant le côté x2=0 du polygone. Les nouvelles variables de base correspondent au sommet B du domaine admissible. La fonction objectif est passée de la valeur zéro à la valeur 6400. Les nouvelles variables auxiliaires sont toujours strictement positives. La deuxième étape de la résolution se fait par l’échange des variables x2 et y2 ce qui conduit à un nouveau tableau dont les variables de base y1 et y2 correspondent au sommet C.

En ce point la fonction objectif vaut 9600. 
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Bien que les deux inconnues x1 et x2 ont été échangées pour devenir des variables auxiliaires, le processus n’est pas terminé puisque dans le dernier tableau les éléments de la ligne des bi ne sont pas tous négatifs. On doit donc continuer à procéder à des échelons d’échange. C’est nécessairement la première colonne qui contient le pivot suivant (b2 < 0) et comme le plus grand quotient caractéristique est q3, la ligne du pivot est aussi fixée. Le troisième échange fournit le tableau suivant :
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Avec ce dernier tableau l’algorithme s’arrête puisque tous les bi sont négatifs, il correspond au sommet D, point solution.

En D, les dernières variables de base y3 et y2 s’annulent et on obtient comme solution :

x1 = 250    et    x2 = 200 ;

avec la variable auxiliaire :

y1 = 1000  

et le maximum de la fonction objectif  zMax = 10400.

5.9. Remarques  

1° Nombre d’opérations

L’algorithme du simplexe nécessite, en général, un nombre fini d’échanges et se termine donc après un nombre fini de calculs. Pour des problèmes où  m > 50  et  m+n < 300  le nombre d’opérations est de l’ordre de 3m/2.

2° Dégénérescence  

Si au cours des calculs on se trouve dans une situation où la plus grande valeur des quotients caractéristiques qi est atteinte par deux quotients simultanément, après échange, au moins un des cj s’annule et une des variables auxiliaires également.

On est alors dans un cas de dégénérescence.

3° Programmation
On peut évidemment programmer l’algorithme du simplexe et c’est indispensable si l’on veut résoudre un problème présentant plusieurs centaines de contraintes. Nous fournissons ci-dessous un programme qui appelle la fonction simplex pour résoudre le premier exemple traité dans ce chapitre (et tout problème analogue…). Les résultats sont également donnés à titre d’information.
Programme :

clc; clear
a=[-20 -10; -4 -5; -6 -15];
b=[16; 32];                          
c=[8000; 2000; 4500];
simplex(a,c,b)
Fonction :

function simplex(a,c,b)
format short g
newa = 0*a;
newb = 0*b;
newc = 0*c;
z = 0;
n_var  = length(b);
n_cond = length(c);
if size(a) ~= [n_cond n_var]
    display('Dimensions ?')
    return
end
%  BOUCLE GENERALE
for boucle = 1:10
M = [a c ; b' z]
if max(c) < 0
    display('c < 0')
    break
end
[B,K] = sort(b);
if B(n_var) < 0
    display('b < 0')
    break
end
q = K(n_var);
[A,L] = sort(a(:,q));
if A(1) > 0
    display('a > 0')
    break
end
quot     = c./a(:,q);
[QUOT,Q] = sort(quot);
for i = n_cond : -1 : 1
    if QUOT(i) < 0
        p = i;
    end
    if QUOT(i) < 0
        display('q < 0')
        break
    end
end
p = Q(p);
q;
pivot = a(p,q);
PIVOT = [p q a(p,q)]
% CALCUL DES NOUVEAUX ELEMENTS
newa(p,:) = -a(p,:)/pivot;
newc(p)   =   -c(p)/pivot;
newa(:,q) =  a(:,q)/pivot;
newb(q)   =    b(q)/pivot; 
newa(p,q) =       1/pivot;
z = z - b(q)*c(p)/pivot;
for i=1 : n_cond
    if i ~= p
        newc(i) = c(i) - a(i,q)*c(p)/pivot;
        for k = 1 : n_var
            if k ~= q
                newa(i,k) = a(i,k) - a(i,q)*a(p,k)/pivot;
            end
        end
    end
end
for k = 1 : n_var
    if k ~= q
        newb(k) = b(k) - b(q)*a(p,k)/pivot;
    end
end
a = newa;
b = newb;
c = newc;
end
Résultats :
M =

         -20         -10        8000

          -4          -5        2000

          -6         -15        4500

          16          32           0

q < 0

PIVOT =

     3     2   -15

M =

          -16      0.66667         5000

           -2      0.33333          500

         -0.4    -0.066667          300

          3.2      -2.1333         9600

q < 0

PIVOT =

     2     1    -2

M =

            8           -2         1000

         -0.5      0.16667          250

          0.2     -0.13333          200

         -1.6         -1.6        10400

b < 0

5.10. Variables libres

Il y a des problèmes de programmation linéaire où certaines variables ne doivent pas être non négatives, on les appelle variables libres.

De telles variables, sur lesquelles il n’y a pas de contrainte de signe, sont éliminées du programme linéaire.

On peut montrer (cf. Numerical analysis, H.R. Schwarz, Wiley ed. 1989) que la règle suivante préside à l’élimination des variables libres :

Si l’élément bq, de la colonne pivot fixée par la variable libre xq à éliminer, est positif (négatif  ou nul), il faut calculer les quotients caractéristiques qi = ci/aiq correspondant aux éléments aiq négatifs (positifs). La ligne pivot est alors déterminée par le plus petit de ces quotients en valeur absolue.

5.11. Elimination

Une variable libre n’est soumise à aucune contrainte, lors de son échange, on supprime, dans le nouveau tableau, la ligne qui la contient.

5.12. Translation de coordonnées

Lorsque, comme dans le deuxième exemple étudié graphiquement, l’origine x1=x2=…=xn=0, n’est pas un point admissible, c’est que les conditions ci ( 0  (i=1,2,…,m) ne sont pas toutes respectées. On ne dispose donc pas d’un point admissible de départ pour l’algorithme du simplexe.

Pour remédier à cette situation on effectue une translation de manière à placer l’origine des axes en un point du domaine admissible, tout en introduisant des variables libres k. 

Soit xk (k=1,2…,n) un point admissible.

Si l’on pose :   xk = xk + k (k=1,2,…,n),

le programme linéaire devient :
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Avec :
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5.13. Exemple

Le problème de la société de transport (cf. fig. p.5) présente un domaine admissible dont l’origine ne fait pas partie. Le tableau traduisant les contraintes, écrit avec comme variables de base x1 et x2, ne peut servir de tableau de départ pour appliquer l’algorithme du simplexe.
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