La mécanique de Newton

La mécanique de Newton. Les différents ... Faire un bilan des forces agissant sur le palet au cours des différentes phases de son mouvement. Préciser, dans ...

ads

un extrait du document



La mécanique de Newton
A. Les différents effets d'une force Lors d'un match de curling, les joueurs lancent un palet en pierre muni
d'une poignée sur une piste de glace horizontale en direction du centre de
la cible circulaire, formée de trois cercles concentriques. 1. Faire un bilan des forces agissant sur le palet au cours des différentes
phases de son mouvement.
2. Préciser, dans chaque situation, si ces forces se compensent et quelle
est la nature du mouvement du palet par rapport au sol.
a. Avant le lancement, le palet est immobile.
b. Au moment du lancement, le palet est projeté en avant par la main du
joueur.
c. Au cours du mouvement, en supposant que le palet ne rencontre aucun
obstacle.
d. Au moment d'un choc contre un autre palet.
B. Force, masse et accélération "Galilée étudiait les lois du mouvement des objets courants, qu'on
trouve sur Terre. En étudiant ces lois, faisant un grand nombre
d'expériences pour voir comment des boules roulent sur un plan incliné,
comment les pendules se balancent, et d'autres encore, Galilée découvrit un
grand principe, le principe de l'inertie, qui est le suivant : si rien
n'agit sur un objet se déplaçant en ligne droite à une certaine vitesse,
l'objet continuera indéfiniment à la même vitesse sur la même ligne droite.
Aussi incroyable que cela puisse paraître à quiconque a essayé de faire
rouler indéfiniment une boule, si cette idéalisation est correcte, et si
aucune influence, telle que frottements sur le plancher ou autres, ne
s'exerçait, la boule continuerait indéfiniment à vitesse constante.
Le pas suivant fut franchi par Newton, qui discuta la question : "Si
elle ne va pas en ligne droite, que se passe-t-il alors ?" Et il donna la
réponse suivante : il faut une force pour modifier la vitesse, de quelque
façon que ce soit. Par exemple, si on pousse une boule dans la direction où
elle se déplace, elle accélérera. Si on la voit modifier sa direction,
alors la force doit avoir agi de côté. La force peut se mesurer comme le
produit de deux effets.
De combien change la vitesse pendant un petit intervalle de temps ?
C'est ce qu'on appelle l'accélération et quand on la multiplie par un
coefficient appelé masse de l'objet, ou son coefficient d'inertie, alors
tout cela donne la force. On peut la mesurer. Par exemple, lorsqu'on fait
tourner au-dessus de sa tête une pierre attachée au bout d'une ficelle, on
s'aperçoit qu'il faut tirer sur la ficelle ; la raison en est que la
vitesse de la pierre sur son cercle, bien que constante, change de
direction ; il faut donc une force qui tire en permanence vers l'intérieur,
et elle est proportionnelle à la masse.
De sorte que si l'on prend deux objets différents et qu'on les fait
tourner au-dessus de sa tête l'un après l'autre, mais à la même vitesse, et
qu'on mesure la force à exercer sur chacun, alors ces forces diffèrent dans
la même proportion que les masses.
C'est une façon de mesurer les masses, par la force requise pour changer
la vitesse." Extrait de La nature de la physique de Richard Feynman, éditions du Seuil,
1980.
1. Enoncer le principe de l'inertie tel que l'exprima Galilée à son époque.
Y aurait-il une objection à faire à cet énoncé ?
2. Relever dans le texte les différents effets d'une force qui y sont
évoqués.
3. Comment l'auteur définit-il l'accélération ? Comment nomme-t-il la masse
? Quelle relation donne-t-il entre l'accélération, la masse et la force
qui agit ?
C. Etude de l'enregistrement d'un mouvement Dispositif On utilise un mobile autoporteur, de masse m = 630 g, sur table à coussin
d'air horizontale.
Ce mobile est relié à une extrémité d'un ressort de constante de raideur k
et de longueur à vide l0. L'autre extrémité du ressort est fixée en un
point O de la table à coussin d'air (cf enregistrement).
A t = 0, on tend le ressort, puis on lance le mobile. On enregistre la
position du centre d'inertie A du mobile à intervalles de temps réguliers.
Exploitation "manuelle"
1. Déterminer la valeur de la vitesse en A2, A4, A6, A9, A10 puis tracer
les vecteurs vitesse aux points 2, 4 et 6.
2. Tracer les vecteurs variation de vitesse (v3 = v4 - v2 et (v5 = v6 - v4,
respectivement aux points 3 et 5.
3. Faire le bilan des forces extérieures appliquées au mobile ; les
représenter sur un schéma.
4. Tracer le vecteur tension exercée par le ressort aux points 3 et 5.
5. Comparer les vecteurs Ti et (vi. Conclure.
6. Calculer (vi/(2() et comparer à Ti ; conclure.
7. Que se passe-t-il au-delà de A8 ? Que peut-on dire du mouvement du
mobile ?
Données : Echelles < vitesse : 1 cm ( 10 cm.s-1
< accélération : 1 cm ( 1 m.s-2
< force : 1 cm ( 0,5 N L'intensité de la force exercée par
un ressort est telle que Ti = k.xi où xi est l'allongement du
ressort à la date ti, c'est-à-dire sa longueur li (OAi sur
l'enregistrement) à la date ti moins sa longueur à vide l0 (OA0
sur l'enregistrement). Exploitation à l'aide d'un logiciel . Ouvrir Regavi, choisir Lecture d'une courbe dans un fichier JPEG ou BMP.
Ouvrir le fichier Newton du dossier Clips Vidéos terminale S.
. L'enregistrement précédemment étudié doit alors apparaître en même temps
que la détermination de l'échelle.
. Prendre pour Y la distance 0.15 m et pour t, la durée ( = 0.04 s ;
choisir axes orthonormés et axe des y = altitude.
. Déplacer l'origine sur le point O et les extrémités de l'échelle
horizontale sur la règle graduée.
. Cliquer sur [pic] qui déclenche la série de mesures ; un Stop apparaît
pour permettre d'arrêter la saisie.
. Cliquer sur chaque point (à partir de A1) après l'avoir soigneusement
visé. En cas d'erreur, le bouton [pic] vous permet de supprimer le
dernier point numérisé.
. Basculer vers Regressi, comme Nouveau Fichier. Dans le mode graphe, cocher [pic] ; les vecteurs vitesse et accélération se
tracent automatiquement.
1. Ces vecteurs sont-ils conformes à vos tracés précédents ? En
particulier, avez-vous une confirmation de votre réponse à la question 7
?
2. Comment calculer à partir des données enregistrées X, Y et t, la
longueur l du ressort à une date t ? En déduire l'expression de la
tension du ressort.
3. Saisir les expressions : k=15_N/m ; lo = 0,15_m ainsi que les
expressions de a, l et T.
4. Dans le mode graphe, tracer T(a) ; modéliser avec un modèle approprié ;
ajuster en bornant au domaine où le ressort agit ; éventuellement
simplifier. Noter l'équation obtenue. Conclure.
5. Cette dernière relation pourrait-elle s'écrire vectoriellement ?
ads